Suppr超能文献

构巢曲霉中丙酰辅酶A代谢与聚酮生物合成的关联

Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans.

作者信息

Zhang Yong-Qiang, Brock Matthias, Keller Nancy P

机构信息

Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Genetics. 2004 Oct;168(2):785-94. doi: 10.1534/genetics.104.027540.

Abstract

Propionyl-CoA is an intermediate metabolite produced through a variety of pathways including thioesterification of propionate and catabolism of odd chain fatty acids and select amino acids. Previously, we found that disruption of the methylcitrate synthase gene, mcsA, which blocks propionyl-CoA utilization, as well as growth on propionate impaired production of several polyketides-molecules typically derived from acetyl-CoA and malonyl-CoA-including sterigmatocystin (ST), a potent carcinogen, and the conidiospore pigment. Here we describe three lines of evidence that demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis. First, inactivation of a putative propionyl-CoA synthase, PcsA, which converts propionate to propionyl-CoA, restored polyketide production and reduced cellular propionyl-CoA content in a DeltamcsA background. Second, inactivation of the acetyl-CoA synthase, FacA, which is also involved in propionate utilization, restored polyketide production in the DeltamcsA background. Third, fungal growth on several compounds (e.g., heptadecanoic acid, isoleucine, and methionine) whose catabolism includes the formation of propionyl-CoA, were found to inhibit ST and conidiospore pigment production. These results demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis.

摘要

丙酰辅酶A是一种中间代谢产物,可通过多种途径产生,包括丙酸的硫酯化、奇数链脂肪酸的分解代谢以及特定氨基酸的分解代谢。此前,我们发现破坏甲基柠檬酸合酶基因mcsA(该基因会阻断丙酰辅酶A的利用)以及在丙酸上的生长会损害几种聚酮化合物的产生,这些聚酮化合物分子通常源自乙酰辅酶A和丙二酰辅酶A,包括强效致癌物柄曲霉素(ST)和分生孢子色素。在此,我们描述了三条证据,证明细胞内丙酰辅酶A水平过高会抑制聚酮化合物的合成。首先,在ΔmcsA背景下,将丙酸转化为丙酰辅酶A的假定丙酰辅酶A合成酶PcsA失活,可恢复聚酮化合物的产生并降低细胞内丙酰辅酶A的含量。其次,同样参与丙酸利用的乙酰辅酶A合成酶FacA失活,在ΔmcsA背景下恢复了聚酮化合物的产生。第三,发现真菌在几种分解代谢包括丙酰辅酶A形成的化合物(如十七烷酸、异亮氨酸和蛋氨酸)上生长会抑制ST和分生孢子色素的产生。这些结果表明,细胞内丙酰辅酶A水平过高会抑制聚酮化合物的合成。

相似文献

1
Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans.
Genetics. 2004 Oct;168(2):785-94. doi: 10.1534/genetics.104.027540.
2
Blockage of methylcitrate cycle inhibits polyketide production in Aspergillus nidulans.
Mol Microbiol. 2004 Apr;52(2):541-50. doi: 10.1111/j.1365-2958.2004.03994.x.
4
Characterization of an acyl-CoA: carboxylate CoA-transferase from Aspergillus nidulans involved in propionyl-CoA detoxification.
Mol Microbiol. 2008 May;68(3):642-56. doi: 10.1111/j.1365-2958.2008.06180.x. Epub 2008 Mar 4.
5
On the mechanism of action of the antifungal agent propionate.
Eur J Biochem. 2004 Aug;271(15):3227-41. doi: 10.1111/j.1432-1033.2004.04255.x.
6
Methylcitrate synthase from Aspergillus nidulans: implications for propionate as an antifungal agent.
Mol Microbiol. 2000 Mar;35(5):961-73. doi: 10.1046/j.1365-2958.2000.01737.x.
7
Sterigmatocystin biosynthesis in Aspergillus nidulans requires a novel type I polyketide synthase.
J Bacteriol. 1995 Aug;177(16):4792-800. doi: 10.1128/jb.177.16.4792-4800.1995.
8
AccR, a TetR Family Transcriptional Repressor, Coordinates Short-Chain Acyl Coenzyme A Homeostasis in .
Appl Environ Microbiol. 2020 Jun 2;86(12). doi: 10.1128/AEM.00508-20.
10
Methylcitrate cycle activation during adaptation of Fusarium solani and Fusarium verticillioides to propionyl-CoA-generating carbon sources.
Microbiology (Reading). 2009 Dec;155(Pt 12):3903-3912. doi: 10.1099/mic.0.031781-0. Epub 2009 Aug 6.

引用本文的文献

1
Genetic dissection of the degradation pathways for the mycotoxin fusaric acid in T16.
Appl Environ Microbiol. 2023 Dec 21;89(12):e0063023. doi: 10.1128/aem.00630-23. Epub 2023 Dec 6.
3
Host-mycobiome metabolic interactions in health and disease.
Gut Microbes. 2022 Jan-Dec;14(1):2121576. doi: 10.1080/19490976.2022.2121576.
4
Regulation of the Leucine Metabolism in .
J Fungi (Basel). 2022 Feb 18;8(2):196. doi: 10.3390/jof8020196.
5
Engineering for the Heterologous Expression of a Bacterial Modular Polyketide Synthase.
J Fungi (Basel). 2021 Dec 17;7(12):1085. doi: 10.3390/jof7121085.
8
Propionate metabolism in a human pathogenic fungus: proteomic and biochemical analyses.
IMA Fungus. 2020 May 5;11:9. doi: 10.1186/s43008-020-00029-9. eCollection 2020.
10
Differential Metabolism of a Two-Carbon Substrate by Members of the Genus.
Front Microbiol. 2017 Nov 27;8:2308. doi: 10.3389/fmicb.2017.02308. eCollection 2017.

本文引用的文献

1
Isolation and Characterization of Sexual Spore Pigments from Aspergillus nidulans.
Appl Environ Microbiol. 1994 Mar;60(3):979-83. doi: 10.1128/aem.60.3.979-983.1994.
2
Blockage of methylcitrate cycle inhibits polyketide production in Aspergillus nidulans.
Mol Microbiol. 2004 Apr;52(2):541-50. doi: 10.1111/j.1365-2958.2004.03994.x.
3
Genetics and physiology of aflatoxin biosynthesis.
Annu Rev Phytopathol. 1998;36:329-62. doi: 10.1146/annurev.phyto.36.1.329.
4
The genetics of Aspergillus nidulans.
Adv Genet. 1953;5:141-238. doi: 10.1016/s0065-2660(08)60408-3.
5
Futile cycling of intermediates of fatty acid biosynthesis toward peroxisomal beta-oxidation in Saccharomyces cerevisiae.
J Biol Chem. 2003 Aug 29;278(35):32596-601. doi: 10.1074/jbc.M305574200. Epub 2003 Jun 20.
6
Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae.
Lancet. 2003 Mar 1;361(9359):743-9. doi: 10.1016/S0140-6736(03)12659-1.
8
The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts.
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13148-53. doi: 10.1073/pnas.192319099. Epub 2002 Sep 23.
9
Relationship between secondary metabolism and fungal development.
Microbiol Mol Biol Rev. 2002 Sep;66(3):447-59, table of contents. doi: 10.1128/MMBR.66.3.447-459.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验