Suppr超能文献

在随机临床试验中校正观察到的暴露因素时的合理性与敏感性

Sense and sensitivity when correcting for observed exposures in randomized clinical trials.

作者信息

Vansteelandt S, Goetghebeur E

机构信息

Ghent University, Ghent, Belgium.

出版信息

Stat Med. 2005 Jan 30;24(2):191-210. doi: 10.1002/sim.1829.

Abstract

Standard intent-to-treat analyses of randomized clinical trials can yield biased estimates of treatment efficacy and toxicity when not all patients comply with their assigned treatment. Flexible methods have been proposed which correct for this by modelling expected contrasts between an individual's observed outcome and his/her potential outcome in the absence of exposure. Because such comparisons often require untestable assumptions, a sensitivity analysis is warranted. We show how this can be performed in a meaningful and practically useful way. Following the approach of Molenberghs, Kenward and Goetghebeur in a missing data context, we evaluate the separate contributions of structural uninformativeness and sampling variation to uncertainty about the population parameters. This leads us to consider Honestly Estimated Ignorance Regions (HEIRs) and Estimated Uncertainty RegiOns (EUROs), respectively. We use the results to estimate the causal effect of observed exposure on successful blood pressure reduction in a randomized controlled clinical trial with partial non-compliance.

摘要

当并非所有患者都遵守其分配的治疗方案时,随机临床试验的标准意向性分析可能会得出有偏差的治疗效果和毒性估计值。已提出了灵活的方法,通过对个体观察到的结果与其在未暴露情况下的潜在结果之间的预期对比进行建模来校正这一问题。由于此类比较通常需要无法检验的假设,因此有必要进行敏感性分析。我们展示了如何以有意义且实际有用的方式进行敏感性分析。遵循莫伦伯格斯、肯沃德和戈特盖布尔在缺失数据背景下的方法,我们评估了结构无信息性和抽样变异对总体参数不确定性的单独贡献。这分别引导我们考虑诚实估计无知区域(HEIRs)和估计不确定性区域(EUROs)。我们利用这些结果来估计在存在部分不依从的随机对照临床试验中,观察到的暴露对成功降低血压的因果效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验