Suppr超能文献

两种线虫——秀丽隐杆线虫和猪蛔虫的线粒体基因组。

The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum.

作者信息

Okimoto R, Macfarlane J L, Clary D O, Wolstenholme D R

机构信息

Department of Biology, University of Utah, Salt Lake City 84112.

出版信息

Genetics. 1992 Mar;130(3):471-98. doi: 10.1093/genetics/130.3.471.

Abstract

The nucleotide sequences of the mitochondrial DNA (mtDNA) molecules of two nematodes, Caenorhabditis elegans [13,794 nucleotide pairs (ntp)], and Ascaris suum (14,284 ntp) are presented and compared. Each molecule contains the genes for two ribosomal RNAs (s-rRNA and l-rRNA), 22 transfer RNAs (tRNAs) and 12 proteins, all of which are transcribed in the same direction. The protein genes are the same as 12 of the 13 protein genes found in other metazoan mtDNAs: Cyt b, cytochrome b; COI-III, cytochrome c oxidase subunits I-III; ATPase6, Fo ATPase subunit 6; ND1-6 and 4L, NADH dehydrogenase subunits 1-6 and 4L: a gene for ATPase subunit 8, common to other metazoan mtDNAs, has not been identified in nematode mtDNAs. The C. elegans and A. suum mtDNA molecules both include an apparently noncoding sequence that contains runs of AT dinucleotides, and direct and inverted repeats (the AT region: 466 and 886 ntp, respectively). A second, apparently noncoding sequence in the C. elegans and A. suum mtDNA molecules (109 and 117 ntp, respectively) includes a single, hairpin-forming structure. There are only 38 and 89 other intergenic nucleotides in the C. elegans and A. suum mtDNAs, and no introns. Gene arrangements are identical in the C. elegans and A. suum mtDNA molecules except that the AT regions have different relative locations. However, the arrangement of genes in the two nematode mtDNAs differs extensively from gene arrangements in all other sequenced metazoan mtDNAs. Unusual features regarding nematode mitochondrial tRNA genes and mitochondrial protein gene initiation codons, previously described by us, are reviewed. In the C. elegans and A. suum mt-genetic codes, AGA and AGG specify serine, TGA specifies tryptophan and ATA specifies methionine. From considerations of amino acid and nucleotide sequence similarities it appears likely that the C. elegans and A. suum ancestral lines diverged close to the time of divergence of the cow and human ancestral lines, about 80 million years ago.

摘要

本文展示并比较了两种线虫——秀丽隐杆线虫(线粒体DNA分子含13,794个核苷酸对)和猪蛔虫(线粒体DNA分子含14,284个核苷酸对)的线粒体DNA(mtDNA)分子的核苷酸序列。每个分子都包含两个核糖体RNA(小核糖体RNA和大核糖体RNA)、22个转运RNA(tRNA)以及12种蛋白质的基因,所有这些基因都按相同方向转录。这些蛋白质基因与其他后生动物线粒体DNA中发现的13种蛋白质基因中的12种相同:Cyt b,细胞色素b;COI - III,细胞色素c氧化酶亚基I - III;ATPase6,F₀ATP酶亚基6;ND1 - 6和4L,NADH脱氢酶亚基1 - 6和4L:其他后生动物线粒体DNA共有的ATPase亚基8基因,在线虫线粒体DNA中未被鉴定出来。秀丽隐杆线虫和猪蛔虫的线粒体DNA分子都包含一个明显的非编码序列,其中含有一连串的AT二核苷酸以及正向和反向重复序列(AT区域:分别为466和886个核苷酸对)。秀丽隐杆线虫和猪蛔虫线粒体DNA分子中的第二个明显非编码序列(分别为109和117个核苷酸对)包含一个单一的发夹结构。秀丽隐杆线虫和猪蛔虫的线粒体DNA中分别仅有38和89个其他基因间核苷酸,且无内含子。秀丽隐杆线虫和猪蛔虫的线粒体DNA分子中的基因排列相同,只是AT区域的相对位置不同。然而,这两种线虫线粒体DNA中的基因排列与所有其他已测序的后生动物线粒体DNA中的基因排列有很大差异。本文回顾了我们之前描述的关于线虫线粒体tRNA基因和线粒体蛋白质基因起始密码子的异常特征。在秀丽隐杆线虫和猪蛔虫的线粒体遗传密码中,AGA和AGG指定丝氨酸,TGA指定色氨酸,ATA指定甲硫氨酸。从氨基酸和核苷酸序列相似性的角度考虑,秀丽隐杆线虫和猪蛔虫的祖先谱系似乎在大约8000万年前牛和人类祖先谱系分化的时间附近就已经分化。

相似文献

1
The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum.
Genetics. 1992 Mar;130(3):471-98. doi: 10.1093/genetics/130.3.471.
6
Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms.
Proc Natl Acad Sci U S A. 1987 Mar;84(5):1324-8. doi: 10.1073/pnas.84.5.1324.
8
The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis.
Mol Biochem Parasitol. 1998 Sep 1;95(1):111-27. doi: 10.1016/s0166-6851(98)00102-9.
10
The Drosophila mitochondrial genome.
Oxf Surv Eukaryot Genes. 1984;1:1-35.

引用本文的文献

2
Phylogenetic and genetic evolutionary analyses of the mitochondrial genome of in from the Qinghai-Tibetan Plateau.
Microbiol Spectr. 2025 Aug 5;13(8):e0306724. doi: 10.1128/spectrum.03067-24. Epub 2025 Jul 7.
3
Complete mitochondrial genomes of and and their phylogenetic relationships within family Pharidae.
Zookeys. 2025 Mar 19;1232:249-266. doi: 10.3897/zookeys.1232.139844. eCollection 2025.
4
An alternative adaptation strategy of the CCA-adding enzyme to accept noncanonical tRNA substrates in Ascaris suum.
J Biol Chem. 2025 Apr;301(4):108414. doi: 10.1016/j.jbc.2025.108414. Epub 2025 Mar 17.
6
Characterization and phylogenetic analysis of the mitochondrial genome of Cylicostephanus longibursatus.
Parasitol Res. 2024 Oct 29;123(10):363. doi: 10.1007/s00436-024-08385-w.
7
Aberrant Mitochondrial tRNA Genes Appear Frequently in Animal Evolution.
Genome Biol Evol. 2024 Nov 1;16(11). doi: 10.1093/gbe/evae232.

本文引用的文献

1
The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA.
Cell. 1980 Nov;22(2 Pt 2):393-403. doi: 10.1016/0092-8674(80)90350-5.
2
Sequence and gene organization of mouse mitochondrial DNA.
Cell. 1981 Oct;26(2 Pt 2):167-80. doi: 10.1016/0092-8674(81)90300-7.
3
tRNA punctuation model of RNA processing in human mitochondria.
Nature. 1981 Apr 9;290(5806):470-4. doi: 10.1038/290470a0.
4
Sequence and organization of the human mitochondrial genome.
Nature. 1981 Apr 9;290(5806):457-65. doi: 10.1038/290457a0.
5
Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing.
Nucleic Acids Res. 1982 Aug 11;10(15):4731-51. doi: 10.1093/nar/10.15.4731.
6
Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome.
J Mol Biol. 1982 Apr 25;156(4):683-717. doi: 10.1016/0022-2836(82)90137-1.
7
SEQ: a nucleotide sequence analysis and recombination system.
Nucleic Acids Res. 1982 Jan 11;10(1):279-94. doi: 10.1093/nar/10.1.279.
10
Different pattern of codon recognition by mammalian mitochondrial tRNAs.
Proc Natl Acad Sci U S A. 1980 Jun;77(6):3164-6. doi: 10.1073/pnas.77.6.3164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验