Antonny B, Chabre M
Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
J Biol Chem. 1992 Apr 5;267(10):6710-8.
Aluminofluoride and beryllofluoride complexes can activate the heterotrimeric G-proteins by binding next to GDP in the nucleotide site of their G alpha subunit and acting as analogs of the gamma-phosphate of a GTP. However, the exact structures of the activatory complexes in solution as well as those of the bound complexes in the nucleotide site are still disputed. We have studied, by monitoring the activation-dependent tryptophan fluorescence of transducin T alpha subunit, the pF (-log[F-]) and pH dependencies of the kinetics of activation and deactivation of T alpha GDP in the presence of NaF and aluminum or beryllium salts. Comparisons were made with the calculated pF and pH dependencies of the distribution of the metallofluoride complexes, in order to identify the activating species. We observed that the contribution of a magnesium-dependent mechanism of activation by fluoride (Antonny, B., Bigay, J., and Chabre, M. (1990) FEBS Lett. 268, 277-280) and effects due to slow equilibration kinetics between various aluminofluoride complexes could give rise to puzzling kinetics that had caused misinterpretations of previous results. Once corrected for these effects, our results suggest that with aluminum AlF3(OH)- is, rather than AlF4-, the main activating species and that the bound form of the complex is tetracoordinated GDP-AlF3. Deactivation kinetics depend on the free fluoride concentration in the medium, suggesting that the simple bimolecular scheme: T alpha GDP-AlF3 in equilibrium with T alpha GDP+AlF3(OH) does not fully describe the interaction. Fluorides in the bound complexes can also exchange with free F- ions in solution. With beryllium, two complexes are activatory: BeF3-.H2O and BeF2(OH)-.H2O. In the nucleotide site these give two tetracoordinated complexes, GDP.BeF3 and GDP.BeF2(OH), as shown by their different dissociation rates.
铝氟化物和铍氟化物络合物可以通过在异三聚体G蛋白的Gα亚基核苷酸位点的GDP旁边结合并充当GTP的γ-磷酸类似物来激活它们。然而,溶液中激活络合物的确切结构以及核苷酸位点中结合络合物的结构仍存在争议。我们通过监测转导素Tα亚基的激活依赖性色氨酸荧光,研究了在NaF和铝盐或铍盐存在下,Tα GDP激活和失活动力学的pF(-log[F-])和pH依赖性。将其与金属氟化物络合物分布的计算pF和pH依赖性进行比较,以确定激活物种。我们观察到,氟化物激活的镁依赖性机制(Antonny,B.,Bigay,J.和Chabre,M.(1990)FEBS Lett. 268,277 - 280)的贡献以及各种铝氟化物络合物之间缓慢平衡动力学的影响可能导致令人困惑的动力学,这导致了对先前结果的错误解释。一旦校正这些影响,我们的结果表明,对于铝来说,AlF3(OH)-而不是AlF4-是主要的激活物种,并且络合物的结合形式是四配位的GDP - AlF3。失活动力学取决于介质中的游离氟化物浓度,这表明简单的双分子方案:Tα GDP - AlF3与Tα GDP + AlF3(OH)处于平衡状态并不能完全描述这种相互作用。结合络合物中的氟化物也可以与溶液中的游离F-离子交换。对于铍,有两种络合物具有激活作用:BeF3-.H2O和BeF2(OH)-.H2O。如它们不同的解离速率所示,在核苷酸位点这些会产生两种四配位络合物,GDP.BeF3和GDP.BeF2(OH)。