Chan J, Xing Y, Magliozzo R S, Bloom B R
Department of Medicine, University of Medicine and Dentistry of New Jersey, Newark 07103.
J Exp Med. 1992 Apr 1;175(4):1111-22. doi: 10.1084/jem.175.4.1111.
Tuberculosis remains one of the major infectious causes of morbidity and mortality in the world, yet the mechanisms by which macrophages defend against Mycobacterium tuberculosis have remained obscure. Results from this study show that murine macrophages, activated by interferon gamma, and lipopolysaccharide or tumor necrosis factor alpha, both growth inhibit and kill M. tuberculosis. This antimycobacterial effect, demonstrable both in murine macrophage cell lines and in peritoneal macrophages of BALB/c mice, is independent of the macrophage capacity to generate reactive oxygen intermediates (ROI). Both the ROI-deficient murine macrophage cell line D9, and its ROI-generating, parental line J774.16, expressed comparable antimycobacterial activity upon activation. In addition, the oxygen radical scavengers superoxide dismutase (SOD), catalase, mannitol, and diazabicyclooctane had no effect on the antimycobacterial activity of macrophages. These findings, together with the results showing the relative resistance of M. tuberculosis to enzymatically generated H2O2, suggest that ROI are unlikely to be significantly involved in killing M. tuberculosis. In contrast, the antimycobacterial activity of these macrophages strongly correlates with the induction of the L-arginine-dependent generation of reactive nitrogen intermediates (RNI). The effector molecule(s) that could participate in mediating this antimycobacterial function are toxic RNI, including NO, NO2, and HNO2, as demonstrated by the mycobacteriocidal effect of acidified NO2. The oxygen radical scavenger SOD adventitiously perturbs RNI production, and cannot be used to discriminate between cytocidal mechanisms involving ROI and RNI. Overall, our results provide support for the view that the L-arginine-dependent production of RNI is the principal effector mechanism in activated murine macrophages responsible for killing and growth inhibiting virulent M. tuberculosis.
结核病仍然是全球主要的感染性发病和死亡原因之一,然而巨噬细胞抵御结核分枝杆菌的机制仍不清楚。本研究结果表明,经γ干扰素、脂多糖或肿瘤坏死因子α激活的小鼠巨噬细胞,既能抑制结核分枝杆菌生长,又能将其杀死。这种抗分枝杆菌作用在小鼠巨噬细胞系和BALB/c小鼠腹膜巨噬细胞中均得到证实,且与巨噬细胞产生活性氧中间体(ROI)的能力无关。ROI缺陷的小鼠巨噬细胞系D9及其能产生ROI的亲代细胞系J774.16在激活后表现出相当的抗分枝杆菌活性。此外,氧自由基清除剂超氧化物歧化酶(SOD)、过氧化氢酶、甘露醇和二氮杂双环辛烷对巨噬细胞的抗分枝杆菌活性没有影响。这些发现,连同表明结核分枝杆菌对酶促产生的H2O2具有相对抗性的结果,提示ROI不太可能在杀死结核分枝杆菌过程中发挥重要作用。相反,这些巨噬细胞的抗分枝杆菌活性与L-精氨酸依赖性活性氮中间体(RNI)生成的诱导密切相关。参与介导这种抗分枝杆菌功能的效应分子是有毒的RNI,包括NO、NO2和HNO2,酸化NO2的杀分枝杆菌作用证明了这一点。氧自由基清除剂SOD偶然会干扰RNI的产生,不能用于区分涉及ROI和RNI的杀细胞机制。总体而言,我们的结果支持以下观点:L-精氨酸依赖性RNI的产生是活化小鼠巨噬细胞中负责杀死和抑制毒力结核分枝杆菌生长的主要效应机制。