Suppr超能文献

KCNQ1锚定蛋白结合结构域突变的致心律失常后果:全细胞和异质性组织的计算模型

Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation: computational models of whole cells and heterogeneous tissue.

作者信息

Saucerman Jeffrey J, Healy Sarah N, Belik Mary E, Puglisi Jose L, McCulloch Andrew D

机构信息

Department of Bioengineering, Whitaker Institute of Biomedical Engineering, University of California San Diego, La Jolla92037-0412, USA.

出版信息

Circ Res. 2004 Dec 10;95(12):1216-24. doi: 10.1161/01.RES.0000150055.06226.4e. Epub 2004 Nov 4.

Abstract

The KCNQ1-G589D gene mutation, associated with a long-QT syndrome, has been shown to disrupt yotiao-mediated targeting of protein kinase A and protein phosphatase-1 to the I(Ks) channel. To investigate how this defect may lead to ventricular arrhythmia during sympathetic stimulation, we use integrative computational models of beta-adrenergic signaling, myocyte excitation-contraction coupling, and action potential propagation in a rabbit ventricular wedge. Paradoxically, we find that the KCNQ1-G589D mutation alone does not prolong the QT interval. But when coupled with beta-adrenergic stimulation in a whole-cell model, the KCNQ1-G589D mutation induced QT prolongation and transient afterdepolarizations, known cellular mechanisms for arrhythmogenesis. These cellular mechanisms amplified tissue heterogeneities in a three-dimensional rabbit ventricular wedge model, elevating transmural dispersion of repolarization and creating other T-wave abnormalities on simulated electrocardiograms. Increasing heart rate protected both single myocyte and the coupled myocardium models from arrhythmic consequences. These findings suggest that the KCNQ1-G589D mutation disrupts a critical link between beta-adrenergic signaling and myocyte electrophysiology, creating both triggers of cardiac arrhythmia and a myocardial substrate vulnerable to such electrical disturbances.

摘要

与长QT综合征相关的KCNQ1-G589D基因突变已被证明会破坏由“yotiao”介导的蛋白激酶A和蛋白磷酸酶-1向I(Ks)通道的靶向作用。为了研究这种缺陷在交感神经刺激过程中如何导致室性心律失常,我们使用了β-肾上腺素能信号传导、心肌细胞兴奋-收缩偶联以及兔心室楔形组织中动作电位传播的综合计算模型。矛盾的是,我们发现单独的KCNQ1-G589D突变并不会延长QT间期。但是,在全细胞模型中与β-肾上腺素能刺激相结合时,KCNQ1-G589D突变会导致QT延长和短暂后去极化,这是已知的心律失常发生的细胞机制。这些细胞机制在三维兔心室楔形模型中放大了组织异质性,增加了复极的跨壁离散度,并在模拟心电图上产生了其他T波异常。增加心率可保护单个心肌细胞和耦合心肌模型免受心律失常后果的影响。这些发现表明,KCNQ1-G589D突变破坏了β-肾上腺素能信号传导与心肌细胞电生理之间的关键联系,既产生了心律失常的触发因素,又形成了易受此类电干扰影响的心肌底物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验