Suppr超能文献

致癌 G 蛋白和 GPCR 信号的系统建模揭示了下游通路激活的意外差异。

Systems modeling of oncogenic G-protein and GPCR signaling reveals unexpected differences in downstream pathway activation.

机构信息

Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.

Pfizer, La Jolla, CA, 92037, USA.

出版信息

NPJ Syst Biol Appl. 2024 Jul 16;10(1):75. doi: 10.1038/s41540-024-00400-1.

Abstract

Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration. In the present study, we first develop a mechanistic mathematical model of a G-protein coupled receptor signaling network that is mutated in almost all cases of uveal melanoma and use model-driven explorations to uncover and explore multiple new areas for investigating this disease. Modeling the two major, mutually-exclusive, oncogenic mutations (Gα and CysLTR) revealed the potential for previously unknown qualitative differences between seemingly interchangeable disease-promoting mutations, and our experiments confirmed oncogenic CysLTR was impaired at activating the FAK/YAP/TAZ pathway relative to Gα. This led us to hypothesize that CYSLTR2 mutations in UM must co-occur with other mutations to activate FAK/YAP/TAZ signaling, and our bioinformatic analysis uncovers a role for co-occurring mutations involving the plexin/semaphorin pathway, which has been shown capable of activating this pathway. Overall, this work highlights the power of mechanism-based computational systems biology as a discovery tool that can leverage available information to open new research areas.

摘要

生化反应网络的数学模型是研究与疾病过程相关的细胞信号网络的重要且新兴的工具。这种数学模型的一个很有前景的潜在应用是研究致病突变如何促进导致疾病的信号表型。通常认为,必须有一个对网络的透彻描述,以便数学建模是有用的,但我们假设,在知识不完全的情况下,数学建模也是有用的,它可以作为一种发现工具,为进一步探索开辟新的领域。在本研究中,我们首先开发了一个 G 蛋白偶联受体信号网络的机制数学模型,该模型在几乎所有葡萄膜黑色素瘤病例中都发生了突变,并利用模型驱动的探索来发现和探索该疾病的多个新研究领域。对两种主要的、相互排斥的致癌突变(Gα 和 CysLTR)进行建模,揭示了看似可互换的促进疾病的突变之间可能存在以前未知的定性差异的潜力,我们的实验证实,致癌性 CysLTR 在激活 FAK/YAP/TAZ 途径方面相对于 Gα 受到损害。这使我们假设 UM 中的 CYSLTR2 突变必须与其他突变共同发生才能激活 FAK/YAP/TAZ 信号,我们的生物信息学分析揭示了涉及丛蛋白/神经鞘磷脂途径的共同突变的作用,该途径已被证明能够激活该途径。总的来说,这项工作强调了基于机制的计算系统生物学作为一种发现工具的强大功能,它可以利用现有信息开辟新的研究领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9808/11252164/346c76bcd580/41540_2024_400_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验