N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, 119992 Moscow, Russia; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia.
Biochim Biophys Acta Bioenerg. 2017 Nov;1858(11):895-905. doi: 10.1016/j.bbabio.2017.08.008. Epub 2017 Aug 18.
The ultrafast primary charge separation in Photosystem I (PS I) excited by femtosecond pulses centered at 720 and 760nm was studied by pump-to-probe laser spectroscopy. The absorbance in the red edge of PS I absorption spectrum has an unusual exponential dependence on wavelength. The cutoff of short wavelength components of 760nm pulse allows direct excitation of reaction center chlorophyll molecules without involvement of light-harvesting antenna. The transient spectrum manifests the features of the primary ion-radical pair PA at time delay <180fs, followed by formation of the secondary pair PA with a characteristic time of 26ps. The obtained data are rationalized in the framework of adiabatic three-state model that includes the chlorophyll dimer P and two symmetrically arranged nearest chlorophyll molecules of A. The arrangement of chlorophylls results in strong electronic coupling between P and A. Excitation in the maximum of P absorption generates electronic states with the highest contribution from P*, whereas excitation in the far-red edge predominantly generates charge transfer state PA in both branches of redox-cofactors. The three-level model accounts for a flat-bottomed potential surface of the excited state and adiabatic character of electron transfer between P and A, providing a microscopic explanation of the ultrafast formation of PA and exponential decline of PS I absorption.
用泵浦探测激光光谱法研究了中心波长为 720nm 和 760nm 的飞秒脉冲激发的光系统 I(PS I)中的超快初级电荷分离。PS I 吸收光谱的红边的吸光度对波长具有不寻常的指数依赖性。760nm 脉冲的短波长成分的截止允许直接激发反应中心叶绿素分子,而无需涉及光捕获天线。瞬态光谱在时间延迟 <180fs 时表现出初级离子自由基对 PA 的特征,随后形成具有特征时间为 26ps 的次级对 PA。获得的数据在包括叶绿素二聚体 P 和两个对称排列的 A 附近叶绿素分子的绝热三态模型框架内得到合理化。叶绿素的排列导致 P 和 A 之间的强电子耦合。在 P 吸收的最大值处激发产生电子态,其中 P*的贡献最高,而在远红边缘处激发主要在氧化还原辅因子的两个分支中产生电荷转移态 PA。三级模型解释了激发态的平底势面和 P 和 A 之间电子转移的绝热特性,为 PA 的超快形成和 PS I 吸收的指数下降提供了微观解释。