Suppr超能文献

使用包含800个蛋白质-配体复合物的PDBbind精制集对14种评分函数进行的广泛测试。

An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes.

作者信息

Wang Renxiao, Lu Yipin, Fang Xueliang, Wang Shaomeng

机构信息

Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109-0934, USA.

出版信息

J Chem Inf Comput Sci. 2004 Nov-Dec;44(6):2114-25. doi: 10.1021/ci049733j.

Abstract

Fourteen popular scoring functions, i.e., X-Score, DrugScore, five scoring functions in the Sybyl software (D-Score, PMF-Score, G-Score, ChemScore, and F-Score), four scoring functions in the Cerius2 software (LigScore, PLP, PMF, and LUDI), two scoring functions in the GOLD program (GoldScore and ChemScore), and HINT, were tested on the refined set of the PDBbind database, a set of 800 diverse protein-ligand complexes with high-resolution crystal structures and experimentally determined Ki or Kd values. The focus of our study was to assess the ability of these scoring functions to predict binding affinities based on the experimentally determined high-resolution crystal structures of proteins in complex with their ligands. The quantitative correlation between the binding scores produced by each scoring function and the known binding constants of the 800 complexes was computed. X-Score, DrugScore, Sybyl::ChemScore, and Cerius2::PLP provided better correlations than the other scoring functions with standard deviations of 1.8-2.0 log units. These four scoring functions were also found to be robust enough to carry out computation directly on unaltered crystal structures. To examine how well scoring functions predict the binding affinities for ligands bound to the same target protein, the performance of these 14 scoring functions were evaluated on three subsets of protein-ligand complexes from the test set: HIV-1 protease complexes (82 entries), trypsin complexes (45 entries), and carbonic anhydrase II complexes (40 entries). Although the results for the HIV-1 protease subset are less than desirable, several scoring functions are able to satisfactorily predict the binding affinities for the trypsin and the carbonic anhydrase II subsets with standard deviation as low as 1.0 log unit (corresponding to 1.3-1.4 kcal/mol at room temperature). Our results demonstrate the strengths as well as the weaknesses of current scoring functions for binding affinity prediction.

摘要

在PDBbind数据库的精炼集上测试了14种常用评分函数,即X-Score、DrugScore、Sybyl软件中的5种评分函数(D-Score、PMF-Score、G-Score、ChemScore和F-Score)、Cerius2软件中的4种评分函数(LigScore、PLP、PMF和LUDI)、GOLD程序中的2种评分函数(GoldScore和ChemScore)以及HINT。该精炼集包含800个具有高分辨率晶体结构且经实验测定Ki或Kd值的不同蛋白质-配体复合物。我们研究的重点是评估这些评分函数基于蛋白质与其配体复合物的实验测定高分辨率晶体结构预测结合亲和力的能力。计算了每个评分函数产生的结合分数与800个复合物已知结合常数之间的定量相关性。X-Score、DrugScore、Sybyl::ChemScore和Cerius2::PLP与其他评分函数相比具有更好的相关性,标准差为1.8 - 2.0对数单位。还发现这四种评分函数足够稳健,能够直接在未改变的晶体结构上进行计算。为了检验评分函数对与同一靶蛋白结合的配体的结合亲和力预测效果如何,在测试集中的三个蛋白质-配体复合物子集上评估了这14种评分函数的性能:HIV-1蛋白酶复合物(82个条目)、胰蛋白酶复合物(45个条目)和碳酸酐酶II复合物(40个条目)。尽管HIV-1蛋白酶子集的结果不尽人意,但几种评分函数能够令人满意地预测胰蛋白酶和碳酸酐酶II子集的结合亲和力,标准差低至1.0对数单位(在室温下相当于1.3 - 1.4千卡/摩尔)。我们的结果展示了当前结合亲和力预测评分函数的优点和缺点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验