Advanced Technology Solutions Division, NEC Informatec Systems, Ltd., 2-6-1, Kitamigata, Takatsu-ku, Kawasaki, Kanagawa 213-8511, Japan.
J Mol Graph Model. 2010 Nov;29(3):492-7. doi: 10.1016/j.jmgm.2010.09.006. Epub 2010 Sep 29.
Accurate prediction of protein-ligand binding affinities for lead optimization in drug discovery remains an important and challenging problem on scoring functions for docking simulation. In this paper, we propose a data-driven approach that integrates multiple scoring functions to predict protein-ligand binding affinity directly. We then propose a new method called multiple instance regression based scoring (MIRS) that incorporates unbound ligand conformations using multiple scoring functions. We evaluated the predictive performance of MIRS using 100 protein-ligand complexes and their binding affinities. The experimental results showed that MIRS outperformed the 11 conventional scoring functions including LigScore, PLP, AutoDock, G-Score, D-Score, LUDI, F-Score, ChemScore, X-Score, PMF, and DrugScore. In addition, we confirmed that MIRS performed well on binding pose prediction. Our results reveal that it is indispensable to incorporate unbound ligand conformations in both binding affinity prediction and binding pose prediction. The proposed method will accelerate efficient lead optimization on structure-based drug design and provide a new direction to designing of new scoring score functions.
准确预测蛋白质-配体结合亲和力对于药物发现中的先导优化仍然是对接模拟评分函数的一个重要且具有挑战性的问题。在本文中,我们提出了一种数据驱动的方法,该方法将多种评分函数集成在一起,直接预测蛋白质-配体结合亲和力。然后,我们提出了一种称为基于多实例回归的评分(MIRS)的新方法,该方法使用多种评分函数来整合未结合的配体构象。我们使用 100 个蛋白质-配体复合物及其结合亲和力来评估 MIRS 的预测性能。实验结果表明,MIRS 优于包括 LigScore、PLP、AutoDock、G-Score、D-Score、LUDI、F-Score、ChemScore、X-Score、PMF 和 DrugScore 在内的 11 种常规评分函数。此外,我们还证实了 MIRS 在结合构象预测方面表现良好。我们的结果表明,在结合亲和力预测和结合构象预测中都必须整合未结合的配体构象。所提出的方法将加速基于结构的药物设计中的有效先导优化,并为新评分函数的设计提供新的方向。