Suppr超能文献

对接和虚拟筛选的监督一致性评分

Supervised consensus scoring for docking and virtual screening.

作者信息

Teramoto Reiji, Fukunishi Hiroaki

机构信息

Fundamental and Environmental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan.

出版信息

J Chem Inf Model. 2007 Mar-Apr;47(2):526-34. doi: 10.1021/ci6004993. Epub 2007 Feb 13.

Abstract

Docking programs are widely used to discover novel ligands efficiently and can predict protein-ligand complex structures with reasonable accuracy and speed. However, there is an emerging demand for better performance from the scoring methods. Consensus scoring (CS) methods improve the performance by compensating for the deficiencies of each scoring function. However, conventional CS and existing scoring functions have the same problems, such as a lack of protein flexibility, inadequate treatment of salvation, and the simplistic nature of the energy function used. Although there are many problems in current scoring functions, we focus our attention on the incorporation of unbound ligand conformations. To address this problem, we propose supervised consensus scoring (SCS), which takes into account protein-ligand binding process using unbound ligand conformations with supervised learning. An evaluation of docking accuracy for 100 diverse protein-ligand complexes shows that SCS outperforms both CS and 11 scoring functions (PLP, F-Score, LigScore, DrugScore, LUDI, X-Score, AutoDock, PMF, G-Score, ChemScore, and D-score). The success rates of SCS range from 89% to 91% in the range of rmsd < 2 A, while those of CS range from 80% to 85%, and those of the scoring functions range from 26% to 76%. Moreover, we also introduce a method for judging whether a compound is active or inactive with the appropriate criterion for virtual screening. SCS performs quite well in docking accuracy and is presumably useful for screening large-scale compound databases before predicting binding affinity.

摘要

对接程序被广泛用于高效发现新型配体,并且能够以合理的准确性和速度预测蛋白质-配体复合物结构。然而,对于评分方法的性能有了新的更高要求。共识评分(CS)方法通过弥补每个评分函数的不足来提高性能。然而,传统的CS和现有的评分函数存在相同的问题,比如缺乏蛋白质灵活性、对溶剂化处理不足以及所用能量函数过于简单。尽管当前的评分函数存在诸多问题,但我们将注意力集中在未结合配体构象的纳入上。为解决这个问题,我们提出了监督共识评分(SCS),它利用监督学习,通过未结合配体构象来考虑蛋白质-配体的结合过程。对100种不同蛋白质-配体复合物的对接准确性评估表明,SCS的表现优于CS和11种评分函数(PLP、F-Score、LigScore、DrugScore、LUDI、X-Score、AutoDock、PMF、G-Score、ChemScore和D-score)。在均方根偏差(rmsd)<2埃的范围内,SCS的成功率在89%至91%之间,而CS的成功率在80%至85%之间,评分函数的成功率在26%至76%之间。此外,我们还引入了一种用适当标准判断化合物在虚拟筛选中是否有活性的方法。SCS在对接准确性方面表现出色,大概对于在预测结合亲和力之前筛选大规模化合物数据库很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验