Suppr超能文献

均匀的内在神经元兴奋性导致对感觉噪声的过度拟合:一种神经发育障碍的机器人模型。

Homogeneous Intrinsic Neuronal Excitability Induces Overfitting to Sensory Noise: A Robot Model of Neurodevelopmental Disorder.

作者信息

Idei Hayato, Murata Shingo, Yamashita Yuichi, Ogata Tetsuya

机构信息

Department of Intermedia Studies, Waseda University, Tokyo, Japan.

Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan.

出版信息

Front Psychiatry. 2020 Aug 12;11:762. doi: 10.3389/fpsyt.2020.00762. eCollection 2020.

Abstract

Neurodevelopmental disorders, including autism spectrum disorder, have been intensively investigated at the neural, cognitive, and behavioral levels, but the accumulated knowledge remains fragmented. In particular, developmental learning aspects of symptoms and interactions with the physical environment remain largely unexplored in computational modeling studies, although a leading computational theory has posited associations between psychiatric symptoms and an unusual estimation of information uncertainty (precision), which is an essential aspect of the real world and is estimated through learning processes. Here, we propose a mechanistic explanation that unifies the disparate observations a hierarchical predictive coding and developmental learning framework, which is demonstrated in experiments using a neural network-controlled robot. The results show that, through the developmental learning process, homogeneous intrinsic neuronal excitability at the neural level induced self-organization changes at the information processing level, such as hyper sensory precision and overfitting to sensory noise. These changes led to multifaceted alterations at the behavioral level, such as inflexibility, reduced generalization, and motor clumsiness. In addition, these behavioral alterations were accompanied by fluctuating neural activity and excessive development of synaptic connections. These findings might bridge various levels of understandings in autism spectrum and other neurodevelopmental disorders and provide insights into the disease processes underlying observed behaviors and brain activities in individual patients. This study shows the potential of neurorobotics frameworks for modeling how psychiatric disorders arise from dynamic interactions among the brain, body, and uncertain environments.

摘要

神经发育障碍,包括自闭症谱系障碍,已经在神经、认知和行为层面进行了深入研究,但积累的知识仍然零散。特别是,症状的发展学习方面以及与物理环境的相互作用在计算建模研究中基本上仍未得到探索,尽管一种领先的计算理论假定精神症状与对信息不确定性(精度)的异常估计之间存在关联,而信息不确定性是现实世界的一个基本方面,并且是通过学习过程来估计的。在这里,我们提出了一种机制性解释,将不同的观察结果统一起来——一个分层预测编码和发展学习框架,这在使用神经网络控制的机器人进行的实验中得到了证明。结果表明,通过发展学习过程,神经水平上均匀的内在神经元兴奋性在信息处理水平上诱导了自组织变化,如超感官精度和对感官噪声的过度拟合。这些变化导致了行为层面的多方面改变,如灵活性降低、泛化能力下降和运动笨拙。此外,这些行为改变伴随着神经活动的波动和突触连接的过度发育。这些发现可能会在自闭症谱系和其他神经发育障碍的不同理解层面之间架起桥梁,并为个体患者观察到的行为和大脑活动背后的疾病过程提供见解。这项研究展示了神经机器人框架在模拟精神疾病如何从大脑、身体和不确定环境之间的动态相互作用中产生方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0117/7434834/128d059e7eeb/fpsyt-11-00762-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验