Suppr超能文献

能量过滤透射电子显微镜(EFTEM)图像序列的自动空间漂移校正

Automated spatial drift correction for EFTEM image series.

作者信息

Schaffer Bernhard, Grogger Werner, Kothleitner Gerald

机构信息

Research Institute for Electron Microscopy, Graz University of Technology, Steyrergasse 17, A-8010 Graz, Austria.

出版信息

Ultramicroscopy. 2004 Dec;102(1):27-36. doi: 10.1016/j.ultramic.2004.08.003.

Abstract

Energy filtering transmission electron microscopy (EFTEM) is a widely used technique in many areas of scientific research. Image contrast in energy-filtered images arises from specific scattering events such as the ionization of atoms. By combining a set of two or more images, relative sample thickness maps or elemental distribution maps can be easily created. It is also possible to acquire a whole series of energy-filtered images to do more complex data analysis. However, whenever several images are combined to extract certain information, problems are introduced due to sample drift between the exposures. In order to obtain artifact-free information, this spatial drift has to be taken care of. Manual alignment by overlaying and shifting the images to find the best overlap is usually very accurate but extremely time consuming for larger data sets. When large amounts of images are recorded in an EFTEM series, manual correction is no longer a reasonable option. Hence, automatic routines have been developed that are mostly based on the cross-correlation algorithm. Existing routines, however, sometimes fail and again make time consuming manual adjustments necessary. In this paper we describe a new approach to the drift correction problem by incorporating a statistical treatment of the data and we present our statistically determined spatial drift (SDSD) correction program. We show its improved performance by applying it to a typical EFTEM series data block.

摘要

能量过滤透射电子显微镜(EFTEM)是科学研究诸多领域中广泛使用的一种技术。能量过滤图像中的图像对比度源于特定的散射事件,例如原子的电离。通过组合一组两张或更多张图像,可以轻松创建相对样品厚度图或元素分布图。也可以获取一整套能量过滤图像以进行更复杂的数据分析。然而,每当组合几张图像以提取某些信息时,由于曝光之间的样品漂移会引入问题。为了获得无伪影的信息,必须处理这种空间漂移。通过叠加和移动图像以找到最佳重叠来进行手动对齐通常非常准确,但对于较大的数据集来说极其耗时。当在EFTEM系列中记录大量图像时,手动校正不再是一个合理的选择。因此,已经开发出主要基于互相关算法的自动程序。然而,现有的程序有时会失败,并且再次需要进行耗时的手动调整。在本文中我们描述了一种通过纳入数据的统计处理来解决漂移校正问题的新方法,并且展示了我们的统计确定空间漂移(SDSD)校正程序。我们通过将其应用于典型的EFTEM系列数据块来展示其改进的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验