Suppr超能文献

肉葡萄球菌中HPr的罕见空穴形成波动通过压力和温度依赖性酪氨酸环翻转揭示。

Infrequent cavity-forming fluctuations in HPr from Staphylococcus carnosus revealed by pressure- and temperature-dependent tyrosine ring flips.

作者信息

Hattori Mineyuki, Li Hua, Yamada Hiroaki, Akasaka Kazuyuki, Hengstenberg Wolfgang, Gronwald Wolfram, Kalbitzer Hans Robert

机构信息

Department of Molecular Science, Graduate School of Science and Technology, Kobe University, Japan.

出版信息

Protein Sci. 2004 Dec;13(12):3104-14. doi: 10.1110/ps.04877104.

Abstract

Infrequent structural fluctuations of a globular protein is seldom detected and studied in detail. One tyrosine ring of HPr from Staphylococcus carnosus, an 88-residue phosphocarrier protein with no disulfide bonds, undergoes a very slow ring flip, the pressure and temperature dependence of which is studied in detail using the on-line cell high-pressure nuclear magnetic resonance technique in the pressure range from 3 MPa to 200 MPa and in the temperature range from 257 K to 313 K. The ring of Tyr6 is buried sandwiched between a beta-sheet and alpha-helices (the water-accessible area is less than 0.26 nm2), its hydroxyl proton being involved in an internal hydrogen bond. The ring flip rates 10(1)-10(5) s(-1) were determined from the line shape analysis of H(delta1, delta2) and H(epsilon1,epsilon2) of Tyr6, giving an activation volume DeltaV++ of 0.044 +/- 0.008 nm3 (27 mL mol(-1)), an activation enthalpy DeltaH++ of 89 +/- 10 kJ mol(-1), and an activation entropy DeltaS++ of 16 +/- 2 JK(-1) mol(-1). The DeltaV++) and DeltaH++ values for HPr found previously for Tyr and Phe ring flips of BPTI and cytochrome c fall within the range of DeltaV(double dagger) of 28 to 51 mL mol(-1) and DeltaH++ of 71 to 155 kJ mol(-1). The fairly common DeltaV++ and DeltaH++ values are considered to represent the extra space or cavity required for the ring flip and the extra energy required to create a cavity, respectively, in the core part of a globular protein. Nearly complete cold denaturation was found to take place at 200 MPa and 257 K independently from the ring reorientation process.

摘要

球状蛋白质不常见的结构波动很少被详细检测和研究。来自肉葡萄球菌的HPr是一种含88个残基且无二硫键的磷酸载体蛋白,其一个酪氨酸环会发生非常缓慢的环翻转,利用在线池高压核磁共振技术在3MPa至200MPa的压力范围以及257K至313K的温度范围内对其压力和温度依赖性进行了详细研究。Tyr6的环被夹埋在β折叠和α螺旋之间(水可及面积小于0.26nm²),其羟基质子参与一个内部氢键。通过对Tyr6的H(δ1,δ2)和H(ε1,ε2)的线形分析确定了环翻转速率为10⁻¹ - 10⁵ s⁻¹,得到活化体积ΔV‡为0.044±0.008nm³(27mL mol⁻¹),活化焓ΔH‡为89±10kJ mol⁻¹,活化熵ΔS‡为16±2J K⁻¹ mol⁻¹。先前在BPTI和细胞色素c的Tyr和Phe环翻转中发现的HPr的ΔV‡和ΔH‡值落在28至51mL mol⁻¹的ΔV(double dagger)范围以及71至155kJ mol⁻¹的ΔH‡范围内。相当常见的ΔV‡和ΔH‡值分别被认为代表了球状蛋白质核心部分环翻转所需的额外空间或空腔以及形成空腔所需的额外能量。发现几乎完全的冷变性在200MPa和257K时发生且与环重排过程无关。

相似文献

3
Relationship between nonlinear pressure-induced chemical shift changes and thermodynamic parameters.
J Phys Chem B. 2014 May 29;118(21):5681-90. doi: 10.1021/jp502664a. Epub 2014 May 19.
8
Slow cooperative folding of a small globular protein HPr.
Biochemistry. 1998 Jan 13;37(2):622-37. doi: 10.1021/bi9717946.
9
Increased helix and protein stability through the introduction of a new tertiary hydrogen bond.
J Mol Biol. 1999 Mar 12;286(5):1609-19. doi: 10.1006/jmbi.1999.2574.

引用本文的文献

2
Changes in the Aqueous Solvent do not Impact the Internal Ring-Flip Dynamic of Fully Buried F52 in Protein GB1.
Chembiochem. 2025 Jul 11;26(13):e202500183. doi: 10.1002/cbic.202500183. Epub 2025 Jun 4.
3
Free-Energy Landscape and Rate Estimation of the Aromatic Ring Flips in Basic Pancreatic Trypsin Inhibitors Using Metadynamics.
J Chem Theory Comput. 2023 Oct 10;19(19):6605-6618. doi: 10.1021/acs.jctc.3c00460. Epub 2023 Sep 12.
5
NMR Studies of Aromatic Ring Flips to Probe Conformational Fluctuations in Proteins.
J Phys Chem B. 2023 Jan 26;127(3):591-599. doi: 10.1021/acs.jpcb.2c07258. Epub 2023 Jan 14.
6
Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD.
J Struct Biol X. 2022 Dec 6;7:100079. doi: 10.1016/j.yjsbx.2022.100079. eCollection 2023.
8
Pepsin-like aspartic proteases (PAPs) as model systems for combining biomolecular simulation with biophysical experiments.
RSC Adv. 2021 Mar 17;11(18):11026-11047. doi: 10.1039/d0ra10359d. eCollection 2021 Mar 10.
9
Visualizing protein breathing motions associated with aromatic ring flipping.
Nature. 2022 Feb;602(7898):695-700. doi: 10.1038/s41586-022-04417-6. Epub 2022 Feb 16.
10
Comparative Hydrophobic Core Dynamics Between Wild-Type Amyloid-β Fibrils, Glutamate-3 Truncation, and Serine-8 Phosphorylation.
Chemphyschem. 2022 Feb 4;23(3):e202100709. doi: 10.1002/cphc.202100709. Epub 2021 Dec 13.

本文引用的文献

2
Native state hydrogen-exchange analysis of protein folding and protein motional domains.
Methods Enzymol. 2004;380:379-400. doi: 10.1016/S0076-6879(04)80017-X.
3
Dipolar couplings in multiple alignments suggest alpha helical motion in ubiquitin.
J Am Chem Soc. 2003 Jul 9;125(27):8072-3. doi: 10.1021/ja029816l.
4
High-sensitivity sapphire cells for high pressure NMR spectroscopy on proteins.
J Magn Reson. 2003 Apr;161(2):127-31. doi: 10.1016/s1090-7807(02)00179-9.
6
Studying excited states of proteins by NMR spectroscopy.
Nat Struct Biol. 2001 Nov;8(11):932-5. doi: 10.1038/nsb1101-932.
7
Low-lying excited states of proteins revealed from nonlinear pressure shifts in 1H and 15N NMR.
Biochemistry. 2001 Jul 31;40(30):8665-71. doi: 10.1021/bi010312u.
8
On-line cell high-pressure nuclear magnetic resonance technique: application to protein studies.
Methods Enzymol. 2001;338:134-58. doi: 10.1016/s0076-6879(02)38218-1.
9
Protein dynamics from NMR.
Nat Struct Biol. 2000 Sep;7(9):740-3. doi: 10.1038/78963.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验