Suppr超能文献

In vivo evaluation of pharmacologically active microcarriers releasing nerve growth factor and conveying PC12 cells.

作者信息

Tatard V M, Venier-Julienne M C, Benoit J P, Menei P, Montero-Menei C N

机构信息

INSERM U 646, Laboratoire d'Ingénierie de la vectorisation particulaire, 10 rue André Boquel, 49100 Angers, France.

出版信息

Cell Transplant. 2004;13(5):573-83. doi: 10.3727/000000004783983675.

Abstract

Cell therapy will probably become a major therapeutic strategy in the coming years. Nevertheless, few cells survive transplantation when employed as a treatment for neuronal disorders. To address this problem, we have developed a new tool, the pharmacologically active microcarriers (PAM). PAM are biocompatible and biodegradable microparticles coated with cell adhesion molecules, conveying cells on their surface and presenting a controlled delivery of growth factor. Thus, the combined effect of growth factor and coating influences the transported cells by promoting their survival and differentiation and favoring their integration in the host tissue after their complete degradation. Furthermore, the released factor may also influence the microenvironment. In this study, we evaluated their efficacy using nerve growth factor (NGF)-releasing PAM and PC12 cells, in a Parkinson's disease paradigm. After implantation of NGF-releasing or unloaded PAM conveying PC12 cells, or PC12 cells alone, we studied cell survival, differentiation, and apoptosis, as well as behavior of the treated rats. We observed that the NGF-releasing PAM coated with two synthetic peptides (poly-D-lysine and fibronectin-like) induced PC12 cell differentiation and reduced cell death and proliferation. Moreover, the animals receiving this implant presented an improved amphetamine-induced rotational behavior. These findings indicate that PAM could be a promising strategy for cell therapy of neurological diseases and could be employed in other situations with fetal cell transplants or with stem cells.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验