Suppr超能文献

纹状复合细胞反应中的选择性与稀疏性。

Selectivity and sparseness in the responses of striate complex cells.

作者信息

Lehky Sidney R, Sejnowski Terrence J, Desimone Robert

机构信息

Cognitive Brain Mapping Laboratory, RIKEN Brain Science Institute, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.

出版信息

Vision Res. 2005 Jan;45(1):57-73. doi: 10.1016/j.visres.2004.07.021.

Abstract

Probability distributions of macaque complex cell responses to a large set of images were determined. Measures of selectivity were based on the overall shape of the response probability distribution, as quantified by either kurtosis or entropy. We call this non-parametric selectivity, in contrast to parametric selectivity, which measures tuning curve bandwidths. To examine how receptive field properties affected non-parametric selectivity, two models of complex cells were created. One was a standard Gabor energy model, and the other a slight variant constructed from a Gabor function and its Hilbert transform. Functionally, these models differed primarily in the size of their DC responses. The Hilbert model produced higher selectivities than the Gabor model, with the two models bracketing the data from above and below. Thus we see that tiny changes in the receptive field profiles can lead to major changes in selectivity. While selectivity looks at the response distribution of a single neuron across a set of stimuli, sparseness looks at the response distribution of a population of neurons to a single stimulus. In the model, we found that on average the sparseness of a population was equal to the selectivity of cells comprising that population, a property we call ergodicity. We raise the possibility that high sparseness is the result of distortions in the shape of response distributions caused by non-linear, information-losing transforms, unrelated to information theoretic issues of efficient coding.

摘要

确定了猕猴复杂细胞对大量图像反应的概率分布。选择性的度量基于反应概率分布的整体形状,通过峰度或熵进行量化。与测量调谐曲线带宽的参数选择性相反,我们将此称为非参数选择性。为了研究感受野特性如何影响非参数选择性,创建了两种复杂细胞模型。一种是标准的伽柏能量模型,另一种是由伽柏函数及其希尔伯特变换构建的轻微变体。在功能上,这些模型的主要区别在于其直流反应的大小。希尔伯特模型产生的选择性高于伽柏模型,这两种模型从上下两个方向将数据包围起来。因此我们看到,感受野轮廓的微小变化会导致选择性的重大变化。选择性关注单个神经元在一组刺激上的反应分布,而稀疏性关注一群神经元对单个刺激的反应分布。在模型中,我们发现群体的稀疏性平均等于组成该群体的细胞的选择性,我们将此特性称为遍历性。我们提出一种可能性,即高稀疏性是由非线性、信息丢失变换导致的反应分布形状扭曲的结果,与高效编码的信息理论问题无关。

相似文献

1
Selectivity and sparseness in the responses of striate complex cells.
Vision Res. 2005 Jan;45(1):57-73. doi: 10.1016/j.visres.2004.07.021.
2
Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex.
Biol Cybern. 2007 Jun;96(6):547-60. doi: 10.1007/s00422-007-0149-1. Epub 2007 Apr 5.
3
Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex.
J Neurophysiol. 1995 Feb;73(2):713-26. doi: 10.1152/jn.1995.73.2.713.
4
Sparse coding and decorrelation in primary visual cortex during natural vision.
Science. 2000 Feb 18;287(5456):1273-6. doi: 10.1126/science.287.5456.1273.
5
Statistics of visual responses in primate inferotemporal cortex to object stimuli.
J Neurophysiol. 2011 Sep;106(3):1097-117. doi: 10.1152/jn.00990.2010. Epub 2011 May 11.
6
Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1.
J Neurosci. 2002 Apr 1;22(7):2904-15. doi: 10.1523/JNEUROSCI.22-07-02904.2002.
7
Binocular spatial phase tuning characteristics of neurons in the macaque striate cortex.
J Neurophysiol. 1997 Jul;78(1):351-65. doi: 10.1152/jn.1997.78.1.351.
8
Characterizing the sparseness of neural codes.
Network. 2001 Aug;12(3):255-70.
9
Visual response latencies in striate cortex of the macaque monkey.
J Neurophysiol. 1992 Oct;68(4):1332-44. doi: 10.1152/jn.1992.68.4.1332.
10
Sparse coding in striate and extrastriate visual cortex.
J Neurophysiol. 2011 Jun;105(6):2907-19. doi: 10.1152/jn.00594.2010. Epub 2011 Apr 6.

引用本文的文献

1
Unraveling the Neural Code: Analysis of Large-Scale Two-Photon Microscopy Data.
Microscopy (Oxf). 2025 Feb 15. doi: 10.1093/jmicro/dfaf010.
2
Millisecond-scale motor coding precedes sensorimotor learning in songbirds.
bioRxiv. 2024 Dec 22:2024.09.27.615500. doi: 10.1101/2024.09.27.615500.
3
Timing-dependent synergies between motor cortex and posterior spinal stimulation in humans.
J Physiol. 2024 Jun;602(12):2961-2983. doi: 10.1113/JP286183. Epub 2024 May 17.
5
Progressive neuronal plasticity in primate visual cortex during stimulus familiarization.
Sci Adv. 2023 Mar 24;9(12):eade4648. doi: 10.1126/sciadv.ade4648.
6
Population codes enable learning from few examples by shaping inductive bias.
Elife. 2022 Dec 16;11:e78606. doi: 10.7554/eLife.78606.
7
Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy.
Front Comput Neurosci. 2021 Jul 28;15:666131. doi: 10.3389/fncom.2021.666131. eCollection 2021.
8
The basal ganglia control the detailed kinematics of learned motor skills.
Nat Neurosci. 2021 Sep;24(9):1256-1269. doi: 10.1038/s41593-021-00889-3. Epub 2021 Jul 15.
9
Neuronal selectivity to complex vocalization features emerges in the superficial layers of primary auditory cortex.
PLoS Biol. 2021 Jun 16;19(6):e3001299. doi: 10.1371/journal.pbio.3001299. eCollection 2021 Jun.
10
Pseudosparse neural coding in the visual system of primates.
Commun Biol. 2021 Jan 8;4(1):50. doi: 10.1038/s42003-020-01572-2.

本文引用的文献

1
Could information theory provide an ecological theory of sensory processing?
Network. 2011;22(1-4):4-44. doi: 10.3109/0954898X.2011.638888.
3
Communication in neuronal networks.
Science. 2003 Sep 26;301(5641):1870-4. doi: 10.1126/science.1089662.
5
Vision and the statistics of the visual environment.
Curr Opin Neurobiol. 2003 Apr;13(2):144-9. doi: 10.1016/s0959-4388(03)00047-3.
6
An information theoretic approach to the contributions of the firing rates and the correlations between the firing of neurons.
J Neurophysiol. 2003 May;89(5):2810-22. doi: 10.1152/jn.01070.2002. Epub 2003 Jan 15.
7
Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1.
J Neurosci. 2002 Apr 1;22(7):2904-15. doi: 10.1523/JNEUROSCI.22-07-02904.2002.
8
Characterizing the sparseness of neural codes.
Network. 2001 Aug;12(3):255-70.
9
Natural image statistics and neural representation.
Annu Rev Neurosci. 2001;24:1193-216. doi: 10.1146/annurev.neuro.24.1.1193.
10
Sparse coding and decorrelation in primary visual cortex during natural vision.
Science. 2000 Feb 18;287(5456):1273-6. doi: 10.1126/science.287.5456.1273.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验