Kesner Raymond P, Lee Inah, Gilbert Paul
University of Utah, Psychology Department, 380 South 1530 East, Rm. 502, Salt Lake City, UT 84112-0251, USA.
Rev Neurosci. 2004;15(5):333-51. doi: 10.1515/revneuro.2004.15.5.333.
The purpose of this review is to determine whether specific subregions (dentate gyrus [DG], CA3, and CA1) of the hippocampus provide unique contributions to specific processes associated with intrinsic information processing exemplified by novelty detection, encoding, pattern separation, pattern association, pattern completion, retrieval, short-term memory and intermediate-term memory. Based on anatomical neural network organization, electrophysiology of cellular activity, lesions, early gene activation, and computational modeling, it can be shown that there exists extensive cooperation among the three subregions of the hippocampus, but there also exists reliable specificity of function for each of the subregions of the hippocampus. The primary process supported by the DG subregion of the hippocampus can be characterized by orthogonalization of sensory inputs to create a metric spatial representation. Furthermore the DG participates in conjunction with CA3 in supporting spatial pattern separation. The CA3 subregion of the hippocampus supports processes associated with spatial pattern association, spatial pattern completion, novelty detection, and short-term memory. The CA1 subregion of the hippocampus supports processes associated with temporal pattern association, temporal pattern completion, and intermediate-term memory. Furthermore, the CA3 in conjunction with CA1 supports temporal pattern separation. All the above-mentioned processes are assumed to reflect intrinsic processing of information within the hippocampus. The diversity of functions associated with the different subregions of the hippocampus suggests that one should not treat the hippocampus as a single entity, but rather that one should concentrate on elucidating further the functions of both dorsal and ventral subregions of the hippocampus and pathways that directly connect each of the subregions as well as their connections with the entorhinal cortex.
本综述的目的是确定海马体的特定子区域(齿状回[DG]、CA3和CA1)是否对与内在信息处理相关的特定过程做出独特贡献,这些过程以新奇性检测、编码、模式分离、模式关联、模式完成、检索、短期记忆和中期记忆为例。基于解剖神经网络组织、细胞活动的电生理学、损伤、早期基因激活和计算建模,可以表明海马体的三个子区域之间存在广泛合作,但海马体的每个子区域也存在可靠的功能特异性。海马体DG子区域支持的主要过程可通过感觉输入的正交化来创建度量空间表征来描述。此外,DG与CA3共同参与支持空间模式分离。海马体的CA3子区域支持与空间模式关联、空间模式完成、新奇性检测和短期记忆相关的过程。海马体的CA1子区域支持与时间模式关联、时间模式完成和中期记忆相关的过程。此外,CA3与CA1共同支持时间模式分离。上述所有过程都被认为反映了海马体内信息的内在处理。与海马体不同子区域相关的功能多样性表明,不应将海马体视为一个单一实体,而应专注于进一步阐明海马体背侧和腹侧子区域的功能,以及直接连接每个子区域的通路及其与内嗅皮质的连接。