Oltmer Jan, Williams Emily M, Groha Stefan, Rosenblum Emma W, Roy Jessica, Llamas-Rodriguez Josue, Perosa Valentina, Champion Samantha N, Frosch Matthew P, Augustinack Jean C
Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.
Harvard Medical School, Boston, MA 02115, USA.
Brain Commun. 2024 Sep 3;6(5):fcae296. doi: 10.1093/braincomms/fcae296. eCollection 2024.
The hippocampus is heterogeneous in its architecture. It contributes to cognitive processes such as memory and spatial navigation and is susceptible to neurodegenerative disease. Cytoarchitectural features such as neuron size and neuronal collinearity have been used to parcellate the hippocampal subregions. Moreover, pyramidal neuron orientation (orientation of one individual neuron) and collinearity (how neurons align) have been investigated as a measure of disease in schizophrenia. However, a comprehensive quantitative study of pyramidal neuron orientation and collinearity within the hippocampal subregions has not yet been conducted. In this study, we present a high-throughput deep learning approach for the automated extraction of pyramidal neuron orientation in the hippocampal subregions. Based on the pretrained Cellpose algorithm for cellular segmentation, we measured 479 873 pyramidal neurons in 168 hippocampal partitions. We corrected the neuron orientation estimates to account for the curvature of the hippocampus and generated collinearity measures suitable for inter- and intra-individual comparisons. Our deep learning results were validated with manual orientation assessment. This study presents a quantitative metric of pyramidal neuron collinearity within the hippocampus. It reveals significant differences among the individual hippocampal subregions ( 0.001), with cornu ammonis 3 being the most collinear, followed by cornu ammonis 2, cornu ammonis 1, the medial/uncal subregions and subiculum. Our data establishes pyramidal neuron collinearity as a quantitative parameter for hippocampal subregion segmentation, including the differentiation of cornu ammonis 2 and cornu ammonis 3. This novel deep learning approach could facilitate large-scale multicentric analyses in subregion parcellation and lays groundwork for the investigation of mental illnesses at the cellular level.
海马体在结构上具有异质性。它对记忆和空间导航等认知过程有贡献,且易患神经退行性疾病。诸如神经元大小和神经元共线性等细胞结构特征已被用于划分海马体亚区域。此外,锥体细胞神经元方向(单个神经元的方向)和共线性(神经元如何排列)已被作为精神分裂症疾病的一种衡量指标进行研究。然而,尚未对海马体亚区域内的锥体细胞神经元方向和共线性进行全面的定量研究。在本研究中,我们提出了一种高通量深度学习方法,用于自动提取海马体亚区域内的锥体细胞神经元方向。基于用于细胞分割的预训练Cellpose算法,我们在168个海马体分区中测量了479873个锥体细胞神经元。我们校正了神经元方向估计值以考虑海马体的曲率,并生成了适用于个体间和个体内比较的共线性测量值。我们的深度学习结果通过手动方向评估进行了验证。本研究提出了海马体内锥体细胞神经元共线性的定量指标。它揭示了各个海马体亚区域之间存在显著差异( 0.001),其中海马3区共线性最强,其次是海马2区、海马1区、内侧/钩状亚区域和下托。我们的数据将锥体细胞神经元共线性确立为海马体亚区域分割的定量参数,包括区分海马2区和海马3区。这种新颖的深度学习方法有助于在亚区域划分中进行大规模多中心分析,并为在细胞水平上研究精神疾病奠定基础。