Knierim James J, Neunuebel Joshua P
Krieger Mind/Brain Institute and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, United States.
Dept. of Psychological and Brain Sciences, University of Delaware, United States.
Neurobiol Learn Mem. 2016 Mar;129:38-49. doi: 10.1016/j.nlm.2015.10.008. Epub 2015 Oct 26.
Classic computational theories of the mnemonic functions of the hippocampus ascribe the processes of pattern separation to the dentate gyrus (DG) and pattern completion to the CA3 region. Until the last decade, the large majority of single-unit studies of the hippocampus in behaving animals were from the CA1 region. The lack of data from the DG, CA3, and the entorhinal inputs to the hippocampus severely hampered the ability to test these theories with neurophysiological techniques. The past ten years have seen a major increase in the recordings from the CA3 region and the medial entorhinal cortex (MEC), with an increasing (but still limited) number of experiments from the lateral entorhinal cortex (LEC) and DG. This paper reviews a series of studies in a local-global cue mismatch (double-rotation) experiment in which recordings were made from cells in the anterior thalamus, MEC, LEC, DG, CA3, and CA1 regions. Compared to the standard cue environment, the change in the DG representation of the cue-mismatch environment was greater than the changes in its entorhinal inputs, providing support for the theory of pattern separation in the DG. In contrast, the change in the CA3 representation of the cue-mismatch environment was less than the changes in its entorhinal and DG inputs, providing support for a pattern completion/error correction function of CA3. The results are interpreted in terms of continuous attractor network models of the hippocampus and the relationship of these models to pattern separation and pattern completion theories. Whereas DG may perform an automatic pattern separation function, the attractor dynamics of CA3 allow it to perform a pattern separation or pattern completion function, depending on the nature of its inputs and the relative strength of the internal attractor dynamics.
海马体记忆功能的经典计算理论将模式分离过程归因于齿状回(DG),将模式完成过程归因于CA3区域。直到过去十年,对行为动物海马体的绝大多数单单元研究都来自CA1区域。缺乏来自DG、CA3以及海马体的内嗅输入的数据严重阻碍了用神经生理学技术检验这些理论的能力。在过去十年中,来自CA3区域和内侧内嗅皮质(MEC)的记录大幅增加,来自外侧内嗅皮质(LEC)和DG的实验数量也在增加(但仍然有限)。本文回顾了一系列在局部 - 全局线索不匹配(双旋转)实验中的研究,在该实验中,对前丘脑、MEC、LEC、DG、CA3和CA1区域的细胞进行了记录。与标准线索环境相比,线索不匹配环境中DG表征的变化大于其内嗅输入的变化,这为DG中的模式分离理论提供了支持。相比之下,线索不匹配环境中CA3表征的变化小于其内嗅和DG输入的变化,这为CA3的模式完成/错误校正功能提供了支持。研究结果根据海马体的连续吸引子网络模型以及这些模型与模式分离和模式完成理论的关系进行了解释。虽然DG可能执行自动模式分离功能,但CA3的吸引子动力学使其能够根据其输入的性质和内部吸引子动力学的相对强度执行模式分离或模式完成功能。