Suppr超能文献

使用监督计算方法基于转录预测对干扰素β的反应

Transcription-based prediction of response to IFNbeta using supervised computational methods.

作者信息

Baranzini Sergio E, Mousavi Parvin, Rio Jordi, Caillier Stacy J, Stillman Althea, Villoslada Pablo, Wyatt Matthew M, Comabella Manuel, Greller Larry D, Somogyi Roland, Montalban Xavier, Oksenberg Jorge R

机构信息

Department of Neurology, School of Medicine University of California, San Francisco, USA.

出版信息

PLoS Biol. 2005 Jan;3(1):e2. doi: 10.1371/journal.pbio.0030002. Epub 2004 Dec 28.

Abstract

Changes in cellular functions in response to drug therapy are mediated by specific transcriptional profiles resulting from the induction or repression in the activity of a number of genes, thereby modifying the preexisting gene activity pattern of the drug-targeted cell(s). Recombinant human interferon beta (rIFNbeta) is routinely used to control exacerbations in multiple sclerosis patients with only partial success, mainly because of adverse effects and a relatively large proportion of nonresponders. We applied advanced data-mining and predictive modeling tools to a longitudinal 70-gene expression dataset generated by kinetic reverse-transcription PCR from 52 multiple sclerosis patients treated with rIFNbeta to discover higher-order predictive patterns associated with treatment outcome and to define the molecular footprint that rIFNbeta engraves on peripheral blood mononuclear cells. We identified nine sets of gene triplets whose expression, when tested before the initiation of therapy, can predict the response to interferon beta with up to 86% accuracy. In addition, time-series analysis revealed potential key players involved in a good or poor response to interferon beta. Statistical testing of a random outcome class and tolerance to noise was carried out to establish the robustness of the predictive models. Large-scale kinetic reverse-transcription PCR, coupled with advanced data-mining efforts, can effectively reveal preexisting and drug-induced gene expression signatures associated with therapeutic effects.

摘要

细胞功能对药物治疗的反应变化是由许多基因活性的诱导或抑制所产生的特定转录谱介导的,从而改变了药物靶向细胞先前存在的基因活性模式。重组人干扰素β(rIFNβ)通常用于控制多发性硬化症患者的病情恶化,但仅取得部分成功,主要是因为存在不良反应以及有相当比例的无反应者。我们将先进的数据挖掘和预测建模工具应用于一个纵向的70基因表达数据集,该数据集由52名接受rIFNβ治疗的多发性硬化症患者通过动力学逆转录PCR生成,以发现与治疗结果相关的高阶预测模式,并确定rIFNβ在外周血单核细胞上留下的分子印记。我们鉴定出九组基因三联体,其在治疗开始前进行检测时,对干扰素β反应的预测准确率高达86%。此外,时间序列分析揭示了参与对干扰素β反应良好或不良的潜在关键因素。对随机结果类别和噪声耐受性进行了统计测试,以确定预测模型的稳健性。大规模动力学逆转录PCR与先进的数据挖掘工作相结合,能够有效地揭示与治疗效果相关的先前存在的和药物诱导的基因表达特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e88f/539058/988f3170c67f/pbio.0030002.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验