Hildebrandt W, Schütze H, Stegemann J
Physiologisches Institut Deutschen Sporthochschule Köln, Federal Republic of Germany.
Eur J Appl Physiol Occup Physiol. 1992;64(3):250-7. doi: 10.1007/BF00626288.
Recovery from muscle fatigue after exercise is known to have two beneficial effects: improved blood lactate elimination and a central nervous recuperation of the capacity for exercise. This study indicates circulatory mechanisms that might limit active recovery. Ten subjects were seated on a cycle ergometer and performed arm cranking exercise at an anaerobic intensity which was for each individual in three periods of 6 min, alternating with recovery intervals of 14 min. In two randomly assigned tests, recovery consisted either of passive sitting (control) or cycling at 80 W for 12 min. Both tests terminated with an identical final passive rest period of 25 min. In the cycling test arm cranking led to a heart rate increase which was further elevated with each repetition, while in the control test no differences were shown among the cranking periods. No corresponding difference was found for oxygen consumption. During the 25 min of final rest, the cycling test showed arterial hypotension and elevated heart rate both of which were absent in the control tests. Venous-occlusion-plethysmography revealed a postcranking forearm hyperaemia. In the cycling test hyperaemia was markedly reduced with the onset of cycling due to vasoconstriction; this effect was absent in the control test. A reduction in blood lactate occurred faster in the cycling test, mainly at the onset of cycling. Total plasma fluid loss combined with forearm fluid uptake was accentuated and prolonged by cycling recovery. Recovery exercise performed by muscles other than those that were fatigued could have led to arterial hypotension (shock-index about 1) through both plasma fluid loss and additional vasodilatation depending on the muscle mass involved.(ABSTRACT TRUNCATED AT 250 WORDS)