Suppr超能文献

质子将NR1/NR2B N-甲基-D-天冬氨酸受体捕获在非传导状态。

Protons trap NR1/NR2B NMDA receptors in a nonconducting state.

作者信息

Banke Tue G, Dravid Shashank M, Traynelis Stephen F

机构信息

Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

出版信息

J Neurosci. 2005 Jan 5;25(1):42-51. doi: 10.1523/JNEUROSCI.3154-04.2005.

Abstract

NMDA receptors are highly expressed in the CNS and are involved in excitatory synaptic transmission, as well as synaptic plasticity. Given that overstimulation of NMDA receptors can cause cell death, it is not surprising that these channels are under tight control by a series of inhibitory extracellular ions, including zinc, magnesium, and H+. We studied the inhibition by extracellular protons of recombinant NMDA receptor NR1/NR2B single-channel and macroscopic responses in transiently transfected human embryonic kidney HEK 293 cells using patch-clamp techniques. We report that proton inhibition proceeds identically in the absence or presence of agonist, which rules out the possibility that protonation inhibits receptors by altering coagonist binding. The response of macroscopic currents in excised patches to rapid jumps in pH was used to estimate the microscopic association and dissociation rates for protons, which were 1.4 x 10(9) m(-1) sec(-1) and 110-196 sec(-1), respectively (K(d) corresponds to pH 7.2). Protons reduce the open probability without altering the time course of desensitization or deactivation. Protons appear to slow at least one time constant describing the intra-activation shut-time histogram and modestly reduce channel open time, which we interpret to reflect a reduction in the overall channel activation rate and possible proton-induced termination of openings. This is consistent with a modest proton-dependent slowing of the macroscopic response rise time. From these data, we propose a physical model of proton inhibition that can describe macroscopic and single-channel properties of NMDA receptor function over a range of pH values.

摘要

N-甲基-D-天冬氨酸(NMDA)受体在中枢神经系统中高度表达,参与兴奋性突触传递以及突触可塑性。鉴于NMDA受体的过度刺激会导致细胞死亡,这些通道受到包括锌、镁和H⁺在内的一系列抑制性细胞外离子的严格控制也就不足为奇了。我们使用膜片钳技术研究了细胞外质子对瞬时转染的人胚肾HEK 293细胞中重组NMDA受体NR1/NR2B单通道和宏观反应的抑制作用。我们报告,无论有无激动剂,质子抑制作用的过程都是相同的,这排除了质子化通过改变共激动剂结合来抑制受体的可能性。利用切除膜片中宏观电流对pH快速变化的反应来估计质子的微观结合和解离速率,分别为1.4×10⁹ m⁻¹ s⁻¹和110 - 196 s⁻¹(解离常数对应于pH 7.2)。质子降低开放概率,而不改变脱敏或失活的时间进程。质子似乎减慢了至少一个描述激活内关闭时间直方图的时间常数,并适度缩短通道开放时间,我们将其解释为反映了整体通道激活速率的降低以及质子诱导的开放终止。这与宏观反应上升时间适度的质子依赖性减慢是一致的。根据这些数据,我们提出了一个质子抑制的物理模型,该模型可以描述在一系列pH值范围内NMDA受体功能的宏观和单通道特性。

相似文献

2
Temperature dependence of NR1/NR2B NMDA receptor channels.NR1/NR2B N-甲基-D-天冬氨酸受体通道的温度依赖性
Neuroscience. 2008 Jan 24;151(2):428-38. doi: 10.1016/j.neuroscience.2007.11.002. Epub 2007 Nov 7.
8
Activation of recombinant NR1/NR2C NMDA receptors.重组NR1/NR2C N-甲基-D-天冬氨酸受体的激活
J Physiol. 2008 Sep 15;586(18):4425-39. doi: 10.1113/jphysiol.2008.158634. Epub 2008 Jul 17.

引用本文的文献

1
GluD receptors are functional ion channels.GluD 受体是功能性离子通道。
Biophys J. 2023 Jun 20;122(12):2383-2395. doi: 10.1016/j.bpj.2023.05.012. Epub 2023 May 12.
5
Structural Basis of Functional Transitions in Mammalian NMDA Receptors.哺乳动物 NMDA 受体功能转变的结构基础。
Cell. 2020 Jul 23;182(2):357-371.e13. doi: 10.1016/j.cell.2020.05.052. Epub 2020 Jun 30.
7
Structure, function, and allosteric modulation of NMDA receptors.NMDA 受体的结构、功能和别构调节。
J Gen Physiol. 2018 Aug 6;150(8):1081-1105. doi: 10.1085/jgp.201812032. Epub 2018 Jul 23.
10
NMDA Receptors in the Central Nervous System.中枢神经系统中的N-甲基-D-天冬氨酸受体
Methods Mol Biol. 2017;1677:1-80. doi: 10.1007/978-1-4939-7321-7_1.

本文引用的文献

1
Glutamate receptor gating.谷氨酸受体门控
Crit Rev Neurobiol. 2004;16(3):187-224. doi: 10.1615/critrevneurobiol.v16.i3.10.
2
NMDA receptor subunit gating--uncovered.N-甲基-D-天冬氨酸受体亚基门控——揭示
Trends Neurosci. 2004 Jan;27(1):7-10; discussion 10. doi: 10.1016/j.tins.2003.10.007.
5
Proton-sensing G-protein-coupled receptors.质子感应型G蛋白偶联受体
Nature. 2003 Sep 4;425(6953):93-8. doi: 10.1038/nature01905.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验