Suppr超能文献

酿酒酵母减数分裂纺锤体的三维超微结构。

Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles.

作者信息

Winey Mark, Morgan Garry P, Straight Paul D, Giddings Thomas H, Mastronarde David N

机构信息

Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309-0347, USA.

出版信息

Mol Biol Cell. 2005 Mar;16(3):1178-88. doi: 10.1091/mbc.e04-09-0765. Epub 2005 Jan 5.

Abstract

Meiotic chromosome segregation leads to the production of haploid germ cells. During meiosis I (MI), the paired homologous chromosomes are separated. Meiosis II (MII) segregation leads to the separation of paired sister chromatids. In the budding yeast Saccharomyces cerevisiae, both of these divisions take place in a single nucleus, giving rise to the four-spored ascus. We have modeled the microtubules in 20 MI and 15 MII spindles by using reconstruction from electron micrographs of serially sectioned meiotic cells. Meiotic spindles contain more microtubules than their mitotic counterparts, with the highest number in MI spindles. It is possible to differentiate between MI versus MII spindles based on microtubule numbers and organization. Similar to mitotic spindles, kinetochores in either MI or MII are attached by a single microtubule. The models indicate that the kinetochores of paired homologous chromosomes in MI or sister chromatids in MII are separated at metaphase, similar to mitotic cells. Examination of both MI and MII spindles reveals that anaphase A likely occurs in addition to anaphase B and that these movements are concurrent. This analysis offers a structural basis for considering meiotic segregation in yeast and for the analysis of mutants defective in this process.

摘要

减数分裂染色体分离导致单倍体生殖细胞的产生。在减数分裂I(MI)期间,配对的同源染色体分离。减数分裂II(MII)分离导致配对的姐妹染色单体分离。在芽殖酵母酿酒酵母中,这两个分裂都发生在单个细胞核中,产生四孢子的子囊。我们通过对连续切片的减数分裂细胞的电子显微照片进行重建,对20个MI纺锤体和15个MII纺锤体中的微管进行了建模。减数分裂纺锤体比有丝分裂纺锤体含有更多的微管,MI纺锤体中的微管数量最多。根据微管数量和组织方式,可以区分MI纺锤体和MII纺锤体。与有丝分裂纺锤体类似,MI或MII中的动粒都由单个微管连接。模型表明,MI中配对同源染色体的动粒或MII中姐妹染色单体的动粒在中期分离,类似于有丝分裂细胞。对MI和MII纺锤体的检查表明,除了后期B之外,可能还会发生后期A,并且这些运动是同时进行的。该分析为研究酵母中的减数分裂分离以及分析该过程中有缺陷的突变体提供了结构基础。

相似文献

1
Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles.
Mol Biol Cell. 2005 Mar;16(3):1178-88. doi: 10.1091/mbc.e04-09-0765. Epub 2005 Jan 5.
2
Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae.
Mol Biol Cell. 2008 Mar;19(3):1199-209. doi: 10.1091/mbc.e07-06-0584. Epub 2007 Dec 19.
3
Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle.
J Cell Biol. 1995 Jun;129(6):1601-15. doi: 10.1083/jcb.129.6.1601.
4
Molecular analysis of kinetochore-microtubule attachment in budding yeast.
Cell. 2001 Jul 27;106(2):195-206. doi: 10.1016/s0092-8674(01)00438-x.
6
Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation.
Science. 2003 Apr 18;300(5618):482-6. doi: 10.1126/science.1081846. Epub 2003 Mar 27.
8
Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B.
Mol Biol Cell. 2019 Sep 1;30(19):2503-2514. doi: 10.1091/mbc.E19-01-0074. Epub 2019 Jul 24.
10
Kinetochore orientation during meiosis is controlled by Aurora B and the monopolin complex.
Cell. 2007 Feb 9;128(3):477-90. doi: 10.1016/j.cell.2006.12.040.

引用本文的文献

1
The functional organisation of the centromere and kinetochore during meiosis.
Curr Opin Cell Biol. 2025 Feb 26;94:102486. doi: 10.1016/j.ceb.2025.102486.
2
Meiosis in budding yeast.
Genetics. 2023 Oct 4;225(2). doi: 10.1093/genetics/iyad125.
3
The Four Causes: The Functional Architecture of Centromeres and Kinetochores.
Annu Rev Genet. 2022 Nov 30;56:279-314. doi: 10.1146/annurev-genet-072820-034559. Epub 2022 Sep 2.
4
Mps1 promotes poleward chromosome movements in meiotic prometaphase.
Mol Biol Cell. 2021 May 1;32(10):1020-1032. doi: 10.1091/mbc.E20-08-0525-T. Epub 2021 Mar 31.
5
Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B.
Mol Biol Cell. 2019 Sep 1;30(19):2503-2514. doi: 10.1091/mbc.E19-01-0074. Epub 2019 Jul 24.
6
The molecular basis of monopolin recruitment to the kinetochore.
Chromosoma. 2019 Sep;128(3):331-354. doi: 10.1007/s00412-019-00700-0. Epub 2019 Apr 30.
7
Structure of the Saccharomyces cerevisiae Hrr25:Mam1 monopolin subcomplex reveals a novel kinase regulator.
EMBO J. 2016 Oct 4;35(19):2139-2151. doi: 10.15252/embj.201694082. Epub 2016 Aug 4.
8
Mechanisms of Mitotic Spindle Assembly.
Annu Rev Biochem. 2016 Jun 2;85:659-83. doi: 10.1146/annurev-biochem-060815-014528. Epub 2016 Apr 21.
9
From equator to pole: splitting chromosomes in mitosis and meiosis.
Genes Dev. 2015 Jan 15;29(2):109-22. doi: 10.1101/gad.255554.114.
10
Sister kinetochores are mechanically fused during meiosis I in yeast.
Science. 2014 Oct 10;346(6206):248-51. doi: 10.1126/science.1256729. Epub 2014 Sep 11.

本文引用的文献

1
Mapping the three-dimensional organization of microtubules in mitotic spindles of yeast.
Trends Cell Biol. 1996 Jun;6(6):235-9. doi: 10.1016/0962-8924(96)40003-4.
2
Spindle checkpoint component Mad2 contributes to biorientation of homologous chromosomes.
Curr Biol. 2003 Nov 11;13(22):1979-84. doi: 10.1016/j.cub.2003.10.057.
3
Polo kinase--meiotic cell cycle coordinator.
Cell Cycle. 2003 Sep-Oct;2(5):400-2.
6
Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I.
Dev Cell. 2003 Apr;4(4):535-48. doi: 10.1016/s1534-5807(03)00086-8.
8
Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis.
Annu Rev Genet. 2001;35:673-745. doi: 10.1146/annurev.genet.35.102401.091334.
9
Homologous recombination near and far from DNA breaks: alternative roles and contrasting views.
Annu Rev Genet. 2001;35:243-74. doi: 10.1146/annurev.genet.35.102401.090509.
10
Meiosis: how to create a specialized cell cycle.
Curr Opin Cell Biol. 2001 Dec;13(6):770-7. doi: 10.1016/s0955-0674(00)00282-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验