Suppr超能文献

蛋白质-蛋白质相互作用对类囊体膜内蛋白质组织的影响。

The influence of protein-protein interactions on the organization of proteins within thylakoid membranes.

作者信息

Tremmel I G, Weis E, Farquhar G D

机构信息

Environmental Biology Group, Research School of Biological Sciences, Australian National University, Canberra, Australia.

出版信息

Biophys J. 2005 Apr;88(4):2650-60. doi: 10.1529/biophysj.104.045666. Epub 2005 Jan 21.

Abstract

The influence of attractive protein-protein interactions on the organization of photosynthetic proteins within the thylakoid membrane was investigated. Protein-protein interactions were simulated using Monte Carlo techniques and the influence of different interaction energies was examined. It was found that weak interactions led to protein clusters whereas strong interactions led to ramified chains. An optimum curve for the relationship between interaction energy and the number of contact sites emerged. With increasing particle densities the effect decreased. In a mixture of interacting and noninteracting particles the distance between the noninteracting particles was increased and there seemed to be much more free space around them. In thylakoids, this could lead to a more homogeneous distribution of the noninteracting but rate-limiting cytochrome bf complexes. Due to the increased free space between cytochrome bf, obstruction of binding sites--occurring unavoidably in a random distribution--may be drastically reduced. Furthermore, protein-protein interactions in thylakoids may lead to a decrease in plastoquinone diffusion.

摘要

研究了有吸引力的蛋白质-蛋白质相互作用对类囊体膜内光合蛋白组织的影响。使用蒙特卡罗技术模拟蛋白质-蛋白质相互作用,并研究了不同相互作用能量的影响。发现弱相互作用导致蛋白质簇,而强相互作用导致分支链。出现了相互作用能量与接触位点数量之间关系的最佳曲线。随着粒子密度的增加,这种效应减弱。在相互作用和非相互作用粒子的混合物中,非相互作用粒子之间的距离增加,并且它们周围似乎有更多的自由空间。在类囊体中,这可能导致非相互作用但限速的细胞色素bf复合物更均匀地分布。由于细胞色素bf之间自由空间的增加,随机分布中不可避免出现的结合位点阻塞可能会大大减少。此外,类囊体中的蛋白质-蛋白质相互作用可能导致质体醌扩散减少。

相似文献

1
The influence of protein-protein interactions on the organization of proteins within thylakoid membranes.
Biophys J. 2005 Apr;88(4):2650-60. doi: 10.1529/biophysj.104.045666. Epub 2005 Jan 21.
3
Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone.
Biochemistry. 2002 Apr 16;41(15):4872-82. doi: 10.1021/bi011650y.
4
Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins.
Biochim Biophys Acta. 2003 Dec 8;1607(2-3):97-109. doi: 10.1016/j.bbabio.2003.09.004.
5
Lipids in photosystem II: interactions with protein and cofactors.
Biochim Biophys Acta. 2007 Jun;1767(6):509-19. doi: 10.1016/j.bbabio.2006.12.009. Epub 2007 Jan 4.
7
Supramolecular organization of thylakoid membrane proteins in green plants.
Biochim Biophys Acta. 2005 Jan 7;1706(1-2):12-39. doi: 10.1016/j.bbabio.2004.09.009.
10
Light-harvesting and structural organization of Photosystem II: from individual complexes to thylakoid membrane.
J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):142-53. doi: 10.1016/j.jphotobiol.2011.02.015. Epub 2011 Feb 23.

引用本文的文献

1
Biological physics by high-speed atomic force microscopy.
Philos Trans A Math Phys Eng Sci. 2020 Dec 11;378(2186):20190604. doi: 10.1098/rsta.2019.0604. Epub 2020 Oct 26.
2
Molecular dynamics simulations in photosynthesis.
Photosynth Res. 2020 May;144(2):273-295. doi: 10.1007/s11120-020-00741-y. Epub 2020 Apr 15.
3
Coarse-grained computer simulation of dynamics in thylakoid membranes: methods and opportunities.
Front Plant Sci. 2014 Jan 21;4:555. doi: 10.3389/fpls.2013.00555. eCollection 2013.
4
Coexistence of fluid and crystalline phases of proteins in photosynthetic membranes.
Biophys J. 2013 Sep 3;105(5):1161-70. doi: 10.1016/j.bpj.2013.06.052.
5
Differential mobility of pigment-protein complexes in granal and agranal thylakoid membranes of C₃ and C₄ plants.
Plant Physiol. 2013 Jan;161(1):497-507. doi: 10.1104/pp.112.207548. Epub 2012 Nov 12.
6
Organization of membrane-associated proteins in lipid bilayers.
Eur Phys J E Soft Matter. 2008 Feb;25(2):129-38. doi: 10.1140/epje/i2007-10272-6. Epub 2008 Mar 11.

本文引用的文献

1
SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROME b6f COMPLEX OF OXYGENIC PHOTOSYNTHESIS.
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:477-508. doi: 10.1146/annurev.arplant.47.1.477.
2
STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS.
Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:641-671. doi: 10.1146/annurev.arplant.48.1.641.
3
Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins.
Biochim Biophys Acta. 2003 Dec 8;1607(2-3):97-109. doi: 10.1016/j.bbabio.2003.09.004.
4
Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone.
Biochemistry. 2002 Apr 16;41(15):4872-82. doi: 10.1021/bi011650y.
5
Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana.
Eur J Biochem. 2001 Dec;268(23):6020-8. doi: 10.1046/j.0014-2956.2001.02505.x.
7
Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants.
Biochim Biophys Acta. 2000 Jul 20;1459(1):148-68. doi: 10.1016/s0005-2728(00)00143-2.
8
Conformational changes in the cytochrome b6f complex induced by inhibitor binding.
J Biol Chem. 2000 May 5;275(18):13195-201. doi: 10.1074/jbc.275.18.13195.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验