Suppr超能文献

用于分析时间依赖性暴露的巢式病例对照研究和生存分析方法的比较。

Comparison of nested case-control and survival analysis methodologies for analysis of time-dependent exposure.

作者信息

Essebag Vidal, Platt Robert W, Abrahamowicz Michal, Pilote Louise

机构信息

Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA.

出版信息

BMC Med Res Methodol. 2005 Jan 25;5(1):5. doi: 10.1186/1471-2288-5-5.

Abstract

BACKGROUND

Epidemiological studies of exposures that vary with time require an additional level of methodological complexity to account for the time-dependence of exposure. This study compares a nested case-control approach for the study of time-dependent exposure with cohort analysis using Cox regression including time-dependent covariates.

METHODS

A cohort of 1340 subjects with four fixed and seven time-dependent covariates was used for this study. Nested case-control analyses were repeated 100 times for each of 4, 8, 16, 32, and 64 controls per case, and point estimates were compared to those obtained using Cox regression on the full cohort. Computational efficiencies were evaluated by comparing central processing unit times required for analysis of the cohort at sizes 1, 2, 4, 8, 16, and 32 times its initial size.

RESULTS

Nested case-control analyses yielded results that were similar to results of Cox regression on the full cohort. Cox regression was found to be 125 times slower than the nested case-control approach (using four controls per case).

CONCLUSIONS

The nested case-control approach is a useful alternative for cohort analysis when studying time-dependent exposures. Its superior computational efficiency may be particularly useful when studying rare outcomes in databases, where the ability to analyze larger sample sizes can improve the power of the study.

摘要

背景

对于随时间变化的暴露因素进行流行病学研究,需要在方法上增加一定的复杂性,以考虑暴露的时间依赖性。本研究比较了用于研究时间依赖性暴露的巢式病例对照方法与使用包含时间依赖性协变量的Cox回归进行队列分析的方法。

方法

本研究使用了一个包含1340名受试者的队列,其中有4个固定协变量和7个时间依赖性协变量。对于每个病例分别有4、8、16、32和64个对照的情况,巢式病例对照分析重复进行100次,并将点估计值与在整个队列上使用Cox回归得到的结果进行比较。通过比较对初始规模1、2、4、8、16和32倍大小的队列进行分析所需的中央处理器时间来评估计算效率。

结果

巢式病例对照分析得出的结果与对整个队列进行Cox回归的结果相似。发现Cox回归比巢式病例对照方法(每个病例使用4个对照)慢125倍。

结论

在研究时间依赖性暴露时,巢式病例对照方法是队列分析的一种有用替代方法。当在数据库中研究罕见结局时,其优越的计算效率可能特别有用,因为分析更大样本量的能力可以提高研究效能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c32c/548149/2a22d40fb253/1471-2288-5-5-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验