Suppr超能文献

利用天然产物库虚拟筛选方法设计严重急性呼吸综合征冠状病毒蛋白酶抑制剂

SARS-CoV protease inhibitors design using virtual screening method from natural products libraries.

作者信息

Liu Bing, Zhou Jiaju

机构信息

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100080, People's Republic of China.

出版信息

J Comput Chem. 2005 Apr 15;26(5):484-90. doi: 10.1002/jcc.20186.

Abstract

Two natural products databases, the marine natural products database (MNPD) and the traditional Chinese medicines database (TCMD), were used to find novel structures of potent SARS-CoV protease inhibitors through virtual screening. Before the procedure, the databases were filtered by Lipinski's ROF and Xu's extension rules. The results were analyzed by statistic methods to eliminate the bias in target-based database screening toward higher molecular weight compounds for enhancing the hit rate. Eighteen lead compounds were recommended by the screening procedure. They were useful for experimental scientists in prioritizing drug candidates and studying the interaction mechanism. The binding mechanism was also analyzed between the best screening compound and the SARS protein.

摘要

利用两个天然产物数据库,即海洋天然产物数据库(MNPD)和中药数据库(TCMD),通过虚拟筛选来寻找强效SARS-CoV蛋白酶抑制剂的新结构。在进行该过程之前,依据Lipinski的ROF规则和徐氏扩展规则对数据库进行筛选。采用统计方法对结果进行分析,以消除基于靶点的数据库筛选中对高分子量化合物的偏向,从而提高命中率。筛选程序推荐了18种先导化合物。它们有助于实验科学家对候选药物进行优先级排序并研究相互作用机制。还分析了最佳筛选化合物与SARS蛋白之间的结合机制。

相似文献

5
Structure-based virtual screening against SARS-3CL(pro) to identify novel non-peptidic hits.
Bioorg Med Chem. 2008 Apr 1;16(7):4138-49. doi: 10.1016/j.bmc.2008.01.011. Epub 2008 Jan 11.
6
Structure-based design and synthesis of highly potent SARS-CoV 3CL protease inhibitors.
Chembiochem. 2007 Sep 24;8(14):1654-7. doi: 10.1002/cbic.200700254.
7
Inhibitors of SARS-3CLpro: virtual screening, biological evaluation, and molecular dynamics simulation studies.
J Chem Inf Model. 2011 Jun 27;51(6):1376-92. doi: 10.1021/ci1004916. Epub 2011 May 23.
8
Structural basis of mercury- and zinc-conjugated complexes as SARS-CoV 3C-like protease inhibitors.
FEBS Lett. 2007 Nov 27;581(28):5454-8. doi: 10.1016/j.febslet.2007.10.048. Epub 2007 Nov 5.
9
Quaternary structure, substrate selectivity and inhibitor design for SARS 3C-like proteinase.
Curr Pharm Des. 2006;12(35):4555-64. doi: 10.2174/138161206779010396.
10
Design, synthesis, and evaluation of trifluoromethyl ketones as inhibitors of SARS-CoV 3CL protease.
Bioorg Med Chem. 2008 Apr 15;16(8):4652-60. doi: 10.1016/j.bmc.2008.02.040. Epub 2008 Feb 15.

引用本文的文献

1
Repurposing doxycycline for the inhibition of monkeypox virus DNA polymerase: a comprehensive computational study.
In Silico Pharmacol. 2025 Feb 13;13(1):27. doi: 10.1007/s40203-025-00307-7. eCollection 2025.
3
investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective.
Front Cell Infect Microbiol. 2022 Aug 22;12:929430. doi: 10.3389/fcimb.2022.929430. eCollection 2022.
4
Targeting severe acute respiratory syndrome-coronavirus (SARS-CoV-1) with structurally diverse inhibitors: a comprehensive review.
RSC Adv. 2020 Jul 29;10(47):28287-28299. doi: 10.1039/d0ra04395h. eCollection 2020 Jul 27.
5
Medicinal Plants with Potential Inhibitory Bioactive Compounds against Coronaviruses.
Adv Pharm Bull. 2022 Jan;12(1):7-16. doi: 10.34172/apb.2022.003. Epub 2021 Jan 30.
6
Drug repurposing for SARS-CoV-2 main protease: Molecular docking and molecular dynamics investigations.
Biochem Biophys Rep. 2022 Mar;29:101225. doi: 10.1016/j.bbrep.2022.101225. Epub 2022 Jan 31.
7
Natural products for infectious microbes and diseases: an overview of sources, compounds, and chemical diversities.
Sci China Life Sci. 2022 Jun;65(6):1123-1145. doi: 10.1007/s11427-020-1959-5. Epub 2021 Oct 21.
8
Mechanistic insight into anti-COVID-19 drugs: recent trends and advancements.
3 Biotech. 2021 Feb;11(2):110. doi: 10.1007/s13205-021-02644-8. Epub 2021 Feb 2.
9
Phytogenic Products and Phytochemicals as a Candidate Strategy to Improve Tolerance to Coronavirus.
Front Vet Sci. 2020 Oct 20;7:573159. doi: 10.3389/fvets.2020.573159. eCollection 2020.

本文引用的文献

1
Small molecules targeting severe acute respiratory syndrome human coronavirus.
Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10012-7. doi: 10.1073/pnas.0403596101. Epub 2004 Jun 28.
2
Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore points.
J Chem Inf Comput Sci. 2004 May-Jun;44(3):1111-22. doi: 10.1021/ci034270n.
3
Identifying inhibitors of the SARS coronavirus proteinase.
Bioorg Med Chem Lett. 2003 Nov 17;13(22):3989-92. doi: 10.1016/j.bmcl.2003.08.066.
4
The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5. doi: 10.1073/pnas.1835675100. Epub 2003 Oct 29.
6
Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs.
Science. 2003 Jun 13;300(5626):1763-7. doi: 10.1126/science.1085658. Epub 2003 May 13.
7
The Genome sequence of the SARS-associated coronavirus.
Science. 2003 May 30;300(5624):1399-404. doi: 10.1126/science.1085953. Epub 2003 May 1.
8
Consideration of molecular weight during compound selection in virtual target-based database screening.
J Chem Inf Comput Sci. 2003 Jan-Feb;43(1):267-72. doi: 10.1021/ci020055f.
9
A new approach to finding natural chemical structure classes.
J Med Chem. 2002 Nov 21;45(24):5311-20. doi: 10.1021/jm010520k.
10
A marine natural product database.
J Chem Inf Comput Sci. 2002 May-Jun;42(3):742-8. doi: 10.1021/ci010111x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验