Suppr超能文献

离散随机系统的灵敏度分析

Sensitivity analysis of discrete stochastic systems.

作者信息

Gunawan Rudiyanto, Cao Yang, Petzold Linda, Doyle Francis J

机构信息

Department of Chemical Engineering, University of California, Santa Barbara, California, USA.

出版信息

Biophys J. 2005 Apr;88(4):2530-40. doi: 10.1529/biophysj.104.053405. Epub 2005 Feb 4.

Abstract

Sensitivity analysis quantifies the dependence of system behavior on the parameters that affect the process dynamics. Classical sensitivity analysis, however, does not directly apply to discrete stochastic dynamical systems, which have recently gained popularity because of its relevance in the simulation of biological processes. In this work, sensitivity analysis for discrete stochastic processes is developed based on density function (distribution) sensitivity, using an analog of the classical sensitivity and the Fisher Information Matrix. There exist many circumstances, such as in systems with multistability, in which the stochastic effects become nontrivial and classical sensitivity analysis on the deterministic representation of a system cannot adequately capture the true system behavior. The proposed analysis is applied to a bistable chemical system--the Schlögl model, and to a synthetic genetic toggle-switch model. Comparisons between the stochastic and deterministic analyses show the significance of explicit consideration of the probabilistic nature in the sensitivity analysis for this class of processes.

摘要

灵敏度分析量化了系统行为对影响过程动态的参数的依赖性。然而,经典灵敏度分析并不直接适用于离散随机动力系统,由于其在生物过程模拟中的相关性,这类系统近来颇受关注。在这项工作中,基于密度函数(分布)灵敏度,利用经典灵敏度的类似物和费希尔信息矩阵来开展离散随机过程的灵敏度分析。存在许多情形,比如在具有多重稳定性的系统中,随机效应变得显著,而对系统确定性表示的经典灵敏度分析无法充分捕捉真实的系统行为。所提出的分析方法应用于一个双稳化学系统——施洛格模型,以及一个合成基因开关模型。随机分析和确定性分析之间的比较表明,对于这类过程的灵敏度分析,明确考虑概率性质具有重要意义。

相似文献

1
Sensitivity analysis of discrete stochastic systems.
Biophys J. 2005 Apr;88(4):2530-40. doi: 10.1529/biophysj.104.053405. Epub 2005 Feb 4.
2
Spectral methods for parametric sensitivity in stochastic dynamical systems.
Biophys J. 2007 Jan 15;92(2):379-93. doi: 10.1529/biophysj.106.085084. Epub 2006 Nov 3.
3
Transition from stochastic to deterministic behavior in calcium oscillations.
Biophys J. 2005 Sep;89(3):1603-11. doi: 10.1529/biophysj.104.057216. Epub 2005 Jul 1.
4
Size-independent differences between the mean of discrete stochastic systems and the corresponding continuous deterministic systems.
Bull Math Biol. 2009 Oct;71(7):1599-611. doi: 10.1007/s11538-009-9415-9. Epub 2009 Mar 26.
6
Single-variable reaction systems: deterministic and stochastic models.
Math Biosci. 2010 Oct;227(2):105-16. doi: 10.1016/j.mbs.2010.06.006. Epub 2010 Jul 14.
7
Mean-field versus stochastic models for transcriptional regulation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031909. doi: 10.1103/PhysRevE.78.031909. Epub 2008 Sep 10.
8
Hybrid deterministic/stochastic simulation of complex biochemical systems.
Mol Biosyst. 2017 Nov 21;13(12):2672-2686. doi: 10.1039/c7mb00426e.
9
Living with noisy genes: how cells function reliably with inherent variability in gene expression.
Annu Rev Biophys Biomol Struct. 2007;36:413-34. doi: 10.1146/annurev.biophys.36.040306.132705.
10
From continuum Fokker-Planck models to discrete kinetic models.
Biophys J. 2005 Sep;89(3):1551-63. doi: 10.1529/biophysj.104.055178. Epub 2005 Jul 1.

引用本文的文献

1
Noise properties of adaptation-conferring biochemical control modules.
Proc Natl Acad Sci U S A. 2023 Sep 19;120(38):e2302016120. doi: 10.1073/pnas.2302016120. Epub 2023 Sep 11.
2
Comparison Theorems for Stochastic Chemical Reaction Networks.
Bull Math Biol. 2023 Mar 31;85(5):39. doi: 10.1007/s11538-023-01136-5.
3
Approximating solutions of the Chemical Master equation using neural networks.
iScience. 2022 Aug 27;25(9):105010. doi: 10.1016/j.isci.2022.105010. eCollection 2022 Sep 16.
4
Differential methods for assessing sensitivity in biological models.
PLoS Comput Biol. 2022 Jun 13;18(6):e1009598. doi: 10.1371/journal.pcbi.1009598. eCollection 2022 Jun.
5
Efficient Bayesian inference of fully stochastic epidemiological models with applications to COVID-19.
R Soc Open Sci. 2021 Aug 11;8(8):211065. doi: 10.1098/rsos.211065. eCollection 2021 Aug.
6
Identifiability analysis for stochastic differential equation models in systems biology.
J R Soc Interface. 2020 Dec;17(173):20200652. doi: 10.1098/rsif.2020.0652. Epub 2020 Dec 16.
7
Sensitivities of Regulation Intensities in Feed-Forward Loops with Multistability.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1969-1972. doi: 10.1109/EMBC.2019.8856532.
8
The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments.
PLoS Comput Biol. 2019 Jan 15;15(1):e1006365. doi: 10.1371/journal.pcbi.1006365. eCollection 2019 Jan.
9
Simulation of Cellular Energy Restriction in Quiescence (ERiQ)-A Theoretical Model for Aging.
Biology (Basel). 2017 Dec 12;6(4):44. doi: 10.3390/biology6040044.
10
Ranking of Reactions Based on Sensitivity of Protein Noise Depends on the Choice of Noise Measure.
PLoS One. 2015 Dec 1;10(12):e0143867. doi: 10.1371/journal.pone.0143867. eCollection 2015.

本文引用的文献

1
The Development of Fluorescence Intensity Standards.
J Res Natl Inst Stand Technol. 2001 Apr 1;106(2):381-9. doi: 10.6028/jres.106.015. Print 2001 Mar-Apr.
2
Optimizing genetic circuits by global sensitivity analysis.
Biophys J. 2004 Oct;87(4):2195-202. doi: 10.1529/biophysj.104.044131.
3
Robustness properties of circadian clock architectures.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13210-5. doi: 10.1073/pnas.0401463101. Epub 2004 Aug 30.
4
Multistability in the lactose utilization network of Escherichia coli.
Nature. 2004 Feb 19;427(6976):737-40. doi: 10.1038/nature02298.
6
Stochastic models for circadian rhythms: effect of molecular noise on periodic and chaotic behaviour.
C R Biol. 2003 Feb;326(2):189-203. doi: 10.1016/s1631-0691(03)00016-7.
7
8
Construction of a genetic toggle switch in Escherichia coli.
Nature. 2000 Jan 20;403(6767):339-42. doi: 10.1038/35002131.
9
Multistability: a major means of differentiation and evolution in biological systems.
Trends Biochem Sci. 1999 Nov;24(11):418-22. doi: 10.1016/s0968-0004(99)01473-5.
10
Emergent properties of networks of biological signaling pathways.
Science. 1999 Jan 15;283(5400):381-7. doi: 10.1126/science.283.5400.381.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验