Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
PLoS Comput Biol. 2022 Jun 13;18(6):e1009598. doi: 10.1371/journal.pcbi.1009598. eCollection 2022 Jun.
Differential sensitivity analysis is indispensable in fitting parameters, understanding uncertainty, and forecasting the results of both thought and lab experiments. Although there are many methods currently available for performing differential sensitivity analysis of biological models, it can be difficult to determine which method is best suited for a particular model. In this paper, we explain a variety of differential sensitivity methods and assess their value in some typical biological models. First, we explain the mathematical basis for three numerical methods: adjoint sensitivity analysis, complex perturbation sensitivity analysis, and forward mode sensitivity analysis. We then carry out four instructive case studies. (a) The CARRGO model for tumor-immune interaction highlights the additional information that differential sensitivity analysis provides beyond traditional naive sensitivity methods, (b) the deterministic SIR model demonstrates the value of using second-order sensitivity in refining model predictions, (c) the stochastic SIR model shows how differential sensitivity can be attacked in stochastic modeling, and (d) a discrete birth-death-migration model illustrates how the complex perturbation method of differential sensitivity can be generalized to a broader range of biological models. Finally, we compare the speed, accuracy, and ease of use of these methods. We find that forward mode automatic differentiation has the quickest computational time, while the complex perturbation method is the simplest to implement and the most generalizable.
差异灵敏度分析在拟合参数、理解不确定性以及预测思想和实验室实验结果方面是必不可少的。尽管目前有许多方法可用于对生物模型进行差异灵敏度分析,但很难确定哪种方法最适合特定的模型。在本文中,我们解释了多种差异灵敏度方法,并评估了它们在一些典型生物模型中的价值。首先,我们解释了三种数值方法的数学基础:伴随灵敏度分析、复型摄动灵敏度分析和前向模式灵敏度分析。然后,我们进行了四个有启发性的案例研究。(a)肿瘤免疫相互作用的 CARRGO 模型突出了差异灵敏度分析相对于传统的简单灵敏度方法提供的额外信息,(b)确定性 SIR 模型展示了在改进模型预测时使用二阶灵敏度的价值,(c)随机 SIR 模型展示了如何在随机建模中攻击差异灵敏度,以及(d)离散的出生-死亡-迁移模型说明了如何将差异灵敏度的复型摄动方法推广到更广泛的生物模型。最后,我们比较了这些方法的速度、准确性和易用性。我们发现前向模式自动微分具有最快的计算时间,而复型摄动方法是最简单实现和最具通用性的。