Hunter Tina M, McNae Iain W, Liang Xiangyang, Bella Juraj, Parsons Simon, Walkinshaw Malcolm D, Sadler Peter J
School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom.
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2288-92. doi: 10.1073/pnas.0407595102. Epub 2005 Feb 8.
The macrocyclic antiviral drug xylyl-bicyclam blocks entry of HIV into cells by targeting the CXCR4 coreceptor, a seven-helix transmembrane G-protein-coupled receptor. Its affinity for CXCR4 is enhanced by binding to Cu2+, Ni2+, or Zn2+. Metallocyclams have a rich configurational chemistry and proteins may bind selectively to specific metallocyclam configurations. Our studies of lysozyme reveal structural details of protein-metallocyclam interactions that are important for receptor recognition. Solution NMR studies show that Cu-cyclam interacts with specific tryptophan residues of lysozyme (Trp-62, Trp-63, and Trp-123). Two major binding sites for both Cu-cyclam and Cu2-xylyl-bicyclam were detected by x-ray crystallography. In the first site, Cu2+ in one cyclam ring of Cu2-xylyl-bicyclam adopts a trans configuration and is coordinated to a carboxylate oxygen of Asp-101, whereas for Cu-cyclam two ring NH groups form H bonds to the carboxylate oxygens of Asp-101, stabilizing an unusual cis (folded) cyclam configuration. For both complexes in this site, a cyclam ring is sandwiched between the indole side chains of two tryptophan residues (Trp-62 and Trp-63). In the second site, a trans cyclam ring is stacked on Trp-123 and H bonded to the backbone carbonyl of Gly-117. We show that there is a pocket in a model of the human CXCR4 coreceptor in which trans and cis configurations of metallobicyclam can bind by direct metal coordination to carboxylate side chains, cyclam-NH...carboxylate H bonding, together with hydrophobic interactions with tryptophan residues. These studies provide a structural basis for the design of macrocycles that bind stereospecifically to G-coupled and other protein receptors.
大环抗病毒药物二甲苯基双环胺通过靶向CXCR4共受体(一种七螺旋跨膜G蛋白偶联受体)来阻止HIV进入细胞。它与Cu2+、Ni2+或Zn2+结合后对CXCR4的亲和力会增强。金属环胺具有丰富的构型化学,蛋白质可能会选择性地结合到特定的金属环胺构型上。我们对溶菌酶的研究揭示了蛋白质 - 金属环胺相互作用的结构细节,这些细节对于受体识别很重要。溶液核磁共振研究表明,铜环胺与溶菌酶的特定色氨酸残基(Trp - 62、Trp - 63和Trp - 123)相互作用。通过X射线晶体学检测到了铜环胺和Cu2 - 二甲苯基双环胺的两个主要结合位点。在第一个位点,Cu2 - 二甲苯基双环胺的一个环胺环中的Cu2+采取反式构型,并与Asp - 101的羧基氧配位,而对于铜环胺,两个环NH基团与Asp - 101的羧基氧形成氢键,稳定了一种不寻常的顺式(折叠)环胺构型。对于该位点的两种复合物,一个环胺环夹在两个色氨酸残基(Trp - 62和Trp - 63)的吲哚侧链之间。在第二个位点,一个反式环胺环堆叠在Trp - 123上,并与Gly - 117的主链羰基形成氢键。我们表明,在人CXCR4共受体模型中有一个口袋,金属双环胺的反式和顺式构型可以通过与羧基侧链的直接金属配位、环胺 - NH...羧基氢键以及与色氨酸残基的疏水相互作用结合在其中。这些研究为设计与G偶联和其他蛋白质受体立体特异性结合的大环化合物提供了结构基础。