Suppr超能文献

新型隐球菌中的染色体易位和节段重复

Chromosomal translocation and segmental duplication in Cryptococcus neoformans.

作者信息

Fraser James A, Huang Johnny C, Pukkila-Worley Read, Alspaugh J Andrew, Mitchell Thomas G, Heitman Joseph

机构信息

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Eukaryot Cell. 2005 Feb;4(2):401-6. doi: 10.1128/EC.4.2.401-406.2005.

Abstract

Large chromosomal events such as translocations and segmental duplications enable rapid adaptation to new environments. Here we marshal genomic, genetic, meiotic mapping, and physical evidence to demonstrate that a chromosomal translocation and segmental duplication occurred during construction of a congenic strain pair in the fungal human pathogen Cryptococcus neoformans. Two chromosomes underwent telomere-telomere fusion, generating a dicentric chromosome that broke to produce a chromosomal translocation, forming two novel chromosomes sharing a large segmental duplication. The duplication spans 62,872 identical nucleotides and generated a second copy of 22 predicted genes, and we hypothesize that this event may have occurred during meiosis. Gene disruption studies of one embedded gene (SMG1) corroborate that this region is duplicated in an otherwise haploid genome. These findings resolve a genome project assembly anomaly and illustrate an example of rapid genome evolution in a fungal genome rich in repetitive elements.

摘要

诸如易位和节段性重复等大型染色体事件能够使生物体快速适应新环境。在此,我们整合了基因组、遗传学、减数分裂图谱以及物理证据,以证明在真菌人类病原体新型隐球菌构建同基因菌株对的过程中发生了一次染色体易位和节段性重复。两条染色体发生了端粒-端粒融合,产生了一条双着丝粒染色体,该染色体断裂后产生了一次染色体易位,形成了两条共享大片段重复的新染色体。该重复片段跨度为62,872个相同核苷酸,并产生了22个预测基因的第二个拷贝,我们推测这一事件可能发生在减数分裂期间。对一个嵌入基因(SMG1)的基因破坏研究证实,在原本为单倍体的基因组中该区域是重复的。这些发现解决了一个基因组计划组装异常问题,并例证了在富含重复元件的真菌基因组中快速基因组进化的一个实例。

相似文献

1
Chromosomal translocation and segmental duplication in Cryptococcus neoformans.
Eukaryot Cell. 2005 Feb;4(2):401-6. doi: 10.1128/EC.4.2.401-406.2005.
3
Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination.
PLoS Biol. 2017 Aug 11;15(8):e2002527. doi: 10.1371/journal.pbio.2002527. eCollection 2017 Aug.
5
Microevolution of Cryptococcus neoformans driven by massive tandem gene amplification.
Mol Biol Evol. 2012 Aug;29(8):1987-2000. doi: 10.1093/molbev/mss066. Epub 2012 Feb 14.
6
Recent evolution of the human pathogen Cryptococcus neoformans by intervarietal transfer of a 14-gene fragment.
Mol Biol Evol. 2006 Oct;23(10):1879-90. doi: 10.1093/molbev/msl070. Epub 2006 Jul 26.
7
The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans.
Science. 2005 Feb 25;307(5713):1321-4. doi: 10.1126/science.1103773. Epub 2005 Jan 13.
8
Centromere scission drives chromosome shuffling and reproductive isolation.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7917-7928. doi: 10.1073/pnas.1918659117. Epub 2020 Mar 19.
9
Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms.
PLoS Biol. 2004 Dec;2(12):e384. doi: 10.1371/journal.pbio.0020384. Epub 2004 Nov 9.
10
Chromosomal rearrangements between serotype A and D strains in Cryptococcus neoformans.
PLoS One. 2009;4(5):e5524. doi: 10.1371/journal.pone.0005524. Epub 2009 May 13.

引用本文的文献

2
Dispensable genome and segmental duplications drive the genome plasticity in .
Front Fungal Biol. 2025 Feb 5;6:1432339. doi: 10.3389/ffunb.2025.1432339. eCollection 2025.
8
Genomic identification of cotton genes branded ovule and stress-related key genes in .
Front Plant Sci. 2023 Feb 3;14:1123745. doi: 10.3389/fpls.2023.1123745. eCollection 2023.
9
The Role of Structural Variation in Adaptation and Evolution of Yeast and Other Fungi.
Genes (Basel). 2021 May 8;12(5):699. doi: 10.3390/genes12050699.

本文引用的文献

2
Cancer chromosomes in crisis.
Nat Genet. 2004 Sep;36(9):932-4. doi: 10.1038/ng0904-932.
3
Lineage-specific gene duplication and loss in human and great ape evolution.
PLoS Biol. 2004 Jul;2(7):E207. doi: 10.1371/journal.pbio.0020207. Epub 2004 Jul 13.
5
Genome evolution in yeasts.
Nature. 2004 Jul 1;430(6995):35-44. doi: 10.1038/nature02579.
6
The biology of mating in Candida albicans.
Nat Rev Microbiol. 2003 Nov;1(2):106-16. doi: 10.1038/nrmicro752.
7
Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae.
Nature. 2004 Apr 8;428(6983):617-24. doi: 10.1038/nature02424. Epub 2004 Mar 7.
8
The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome.
Science. 2004 Apr 9;304(5668):304-7. doi: 10.1126/science.1095781. Epub 2004 Mar 4.
10
Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments.
EMBO J. 2004 Jan 14;23(1):234-43. doi: 10.1038/sj.emboj.7600024. Epub 2003 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验