Suppr超能文献

金属增强荧光:生物技术中的一种新兴工具。

Metal-enhanced fluorescence: an emerging tool in biotechnology.

作者信息

Aslan Kadir, Gryczynski Ignacy, Malicka Joanna, Matveeva Evgenia, Lakowicz Joseph R, Geddes Chris D

机构信息

Laboratory for Advanced Medical Plasmonics, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201, USA.

出版信息

Curr Opin Biotechnol. 2005 Feb;16(1):55-62. doi: 10.1016/j.copbio.2005.01.001.

Abstract

Over the past 15 years, fluorescence has become the dominant detection/sensing technology in medical diagnostics and biotechnology. Although fluorescence is a highly sensitive technique, where single molecules can readily be detected, there is still a drive for reduced detection limits. The detection of a fluorophore is usually limited by its quantum yield, autofluorescence of the samples and/or the photostability of the fluorophores; however, there has been a recent explosion in the use of metallic nanostructures to favorably modify the spectral properties of fluorophores and to alleviate some of these fluorophore photophysical constraints. The use of fluorophore-metal interactions has been termed radiative decay engineering, metal-enhanced fluorescence or surface-enhanced fluorescence.

摘要

在过去的15年里,荧光已成为医学诊断和生物技术领域占主导地位的检测/传感技术。尽管荧光是一种高度灵敏的技术,单分子很容易被检测到,但降低检测限的需求仍然存在。荧光团的检测通常受其量子产率、样品的自发荧光和/或荧光团的光稳定性限制;然而,最近金属纳米结构的应用激增,可有利地改变荧光团的光谱特性,并缓解其中一些荧光团的光物理限制。荧光团与金属相互作用的应用被称为辐射衰变工程、金属增强荧光或表面增强荧光。

相似文献

1
Metal-enhanced fluorescence: an emerging tool in biotechnology.
Curr Opin Biotechnol. 2005 Feb;16(1):55-62. doi: 10.1016/j.copbio.2005.01.001.
2
Radiative decay engineering: biophysical and biomedical applications.
Anal Biochem. 2001 Nov 1;298(1):1-24. doi: 10.1006/abio.2001.5377.
3
Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure.
Anal Biochem. 2014 Jan 15;445:1-13. doi: 10.1016/j.ab.2013.10.009. Epub 2013 Oct 14.
4
Radiative decay engineering 3. Surface plasmon-coupled directional emission.
Anal Biochem. 2004 Jan 15;324(2):153-69. doi: 10.1016/j.ab.2003.09.039.
5
Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences.
Langmuir. 2012 Jul 10;28(27):10152-63. doi: 10.1021/la300332x. Epub 2012 May 16.
6
Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission.
Anal Biochem. 2005 Feb 15;337(2):171-94. doi: 10.1016/j.ab.2004.11.026.
7
Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy.
Analyst. 2008 Oct;133(10):1308-46. doi: 10.1039/b802918k. Epub 2008 Jul 16.
8
Plasmon-controlled fluorescence towards high-sensitivity optical sensing.
Adv Biochem Eng Biotechnol. 2009;116:29-72. doi: 10.1007/10_2008_9.
10
Fluorescent probes for sensing and imaging.
Nat Methods. 2011 Jul 28;8(8):642-5. doi: 10.1038/nmeth.1663.

引用本文的文献

1
Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques.
Biosensors (Basel). 2025 Jun 20;15(7):401. doi: 10.3390/bios15070401.
3
Fluorescent silver hydrosol for the dual fluorometric sensing of gallic acid and Cd.
RSC Adv. 2025 May 8;15(19):14767-14777. doi: 10.1039/d5ra00788g. eCollection 2025 May 6.
4
p-Type Organic Semiconductor-Metal Nanoparticle Hybrid Film for the Enhancement of Raman and Fluorescence Detection.
J Phys Chem C Nanomater Interfaces. 2025 Feb 12;129(7):3659-3666. doi: 10.1021/acs.jpcc.4c08030. eCollection 2025 Feb 20.
5
NanoBioAccumulate: Modelling the uptake and bioaccumulation of nanomaterials in soil and aquatic invertebrates via the Enalos DIAGONAL Cloud Platform.
Comput Struct Biotechnol J. 2024 Oct 17;25:243-255. doi: 10.1016/j.csbj.2024.09.028. eCollection 2024 Dec.
6
Silver Nanoparticles Improve Fluorophore Photostability: Application to a Hypericin Study.
Int J Mol Sci. 2024 Sep 15;25(18):9963. doi: 10.3390/ijms25189963.
7
Plasmonic nanoparticle sensors: current progress, challenges, and future prospects.
Nanoscale Horiz. 2024 Nov 19;9(12):2085-2166. doi: 10.1039/d4nh00226a.
10
Dual-functional nano-photosensitizers: Eosin-Y decorated gold nanorods for plasmon-enhanced fluorescence and singlet oxygen generation.
RSC Adv. 2024 Apr 17;14(18):12417-12427. doi: 10.1039/d4ra01551g. eCollection 2024 Apr 16.

本文引用的文献

2
Multiphoton Excitation of Fluorescence near Metallic Particles: Enhanced and Localized Excitation.
J Phys Chem B. 2002 Mar 1;106(9):2191-2195. doi: 10.1021/jp013013n. Epub 2002 Feb 9.
4
Electrochemical and Laser Deposition of Silver for Use in Metal-Enhanced Fluorescence.
Langmuir. 2003 Jul 22;19(15):6236-6241. doi: 10.1021/la020930r.
5
Effects of metallic silver particles on the emission properties of [Ru(bpy)(3)].
Chem Phys Lett. 2003 Apr 29;372(3-4):409-414. doi: 10.1016/S0009-2614(03)00420-2.
8
Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission.
Anal Biochem. 2005 Feb 15;337(2):171-94. doi: 10.1016/j.ab.2004.11.026.
9
Metal-enhanced fluorescence solution-based sensing platform.
J Fluoresc. 2004 Nov;14(6):677-9. doi: 10.1023/b:jofl.0000047217.74943.5c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验