Strauss G, Eisenreich W, Bacher A, Fuchs G
Abteilung Angewandte Mikrobiologie, University of Ulm, Federal Republic of Germany.
Eur J Biochem. 1992 Apr 15;205(2):853-66. doi: 10.1111/j.1432-1033.1992.tb16850.x.
The unresolved autotrophic CO2 fixation pathways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus have been investigated. Autotrophically growing cultures were labelled with [1,4-13C1]succinate, and the 13C pattern in cell constituents was determined by 1H- and 13C-NMR spectroscopy of purified amino acids and other cell constituents. In both organisms succinate contributed to less than 10% of cell carbon, the major part of carbon originated from CO2. All cell constituents became 13C-labelled, but different patterns were observed in the two organisms. This proves that two different cyclic CO2 fixation pathways are operating in autotrophic carbon assimilation in both of which succinate is an intermediate. The 13C-labelling pattern in T. neutrophilus is consistent with the operation of a reductive citric acid cycle and rules out any other known autotrophic CO2 fixation pathway. Surprisingly, the proffered [1,4-13C1]succinate was partially converted to double-labelled [3,4-13C2]glutamate, but not to double-labelled aspartate. These findings suggest that the conversion of citrate to 2-oxoglutarate is readily reversible under the growth conditions used, and a reversible citrate cleavage reaction is proposed. The 13C-labelling pattern in C. aurantiacus disagrees with any of the established CO2 fixation pathways; it therefore demands a novel autotrophic CO2 fixation cycle in which 3-hydroxypropionate and succinate are likely intermediates. The bacterium excreted substantial amounts of 3-hydroxypropionate (5 mM) and succinate (0.5 mM) at the end of autotrophic growth. Autotrophically grown Chloroflexus cells contained acetyl-CoA carboxylase and propionyl-CoA carboxylase activity. These enzymes are proposed to be the main CO2-fixing enzymes resulting in malonyl-CoA and methylmalonyl-CoA formation; from these carboxylation products 3-hydroxypropionate and succinate, respectively, can be formed.
对嗜中性嗜热栖热菌这种硫还原古细菌和嗜光绿弯菌这两种自养型细菌中尚未明确的自养二氧化碳固定途径进行了研究。以[1,4-¹³C₁]琥珀酸标记自养生长的培养物,并通过对纯化的氨基酸和其他细胞成分进行¹H-和¹³C-核磁共振光谱法来确定细胞成分中的¹³C模式。在这两种生物体中,琥珀酸对细胞碳的贡献均小于10%,碳的主要部分源自二氧化碳。所有细胞成分都被¹³C标记,但在这两种生物体中观察到了不同的模式。这证明在自养碳同化过程中存在两种不同的循环二氧化碳固定途径,其中琥珀酸均为中间产物。嗜中性嗜热栖热菌中的¹³C标记模式与还原性柠檬酸循环的运行一致,并排除了任何其他已知的自养二氧化碳固定途径。令人惊讶的是,提供的[1,4-¹³C₁]琥珀酸部分转化为双标记的[3,4-¹³C₂]谷氨酸,但未转化为双标记的天冬氨酸。这些发现表明,在所用的生长条件下,柠檬酸向2-氧代戊二酸的转化很容易逆转,并提出了一种可逆的柠檬酸裂解反应。绿弯菌中的¹³C标记模式与任何已确立的二氧化碳固定途径均不一致;因此需要一种新的自养二氧化碳固定循环,其中3-羟基丙酸酯和琥珀酸可能是中间产物。在自养生长结束时,该细菌分泌了大量的3-羟基丙酸酯(5 mM)和琥珀酸(0.5 mM)。自养生长的绿弯菌细胞含有乙酰辅酶A羧化酶和丙酰辅酶A羧化酶活性。这些酶被认为是导致丙二酰辅酶A和甲基丙二酰辅酶A形成的主要二氧化碳固定酶;分别可以从这些羧化产物中形成3-羟基丙酸酯和琥珀酸。