Holmes Ian
Department of Statistics, 1 South Parks Road, Oxford OX1 3TG, UK.
Bioinformatics. 2005 May 15;21(10):2294-300. doi: 10.1093/bioinformatics/bti177. Epub 2005 Feb 24.
The Expectation Maximization (EM) algorithm, in the form of the Baum-Welch algorithm (for hidden Markov models) or the Inside-Outside algorithm (for stochastic context-free grammars), is a powerful way to estimate the parameters of stochastic grammars for biological sequence analysis. To use this algorithm for multiple-sequence evolutionary modelling, it would be useful to apply the EM algorithm to estimate not only the probability parameters of the stochastic grammar, but also the instantaneous mutation rates of the underlying evolutionary model (to facilitate the development of stochastic grammars based on phylogenetic trees, also known as Statistical Alignment). Recently, we showed how to do this for the point substitution component of the evolutionary process; here, we extend these results to the indel process.
We present an algorithm for maximum-likelihood estimation of insertion and deletion rates from multiple sequence alignments, using EM, under the single-residue indel model owing to Thorne, Kishino and Felsenstein (the 'TKF91' model). The algorithm converges extremely rapidly, gives accurate results on simulated data that are an improvement over parsimonious estimates (which are shown to underestimate the true indel rate), and gives plausible results on experimental data (coronavirus envelope domains). Owing to the algorithm's close similarity to the Baum-Welch algorithm for training hidden Markov models, it can be used in an 'unsupervised' fashion to estimate rates for unaligned sequences, or estimate several sets of rates for sequences with heterogenous rates.
Software implementing the algorithm and the benchmark is available under GPL from http://www.biowiki.org/
期望最大化(EM)算法,以用于隐马尔可夫模型的鲍姆 - 韦尔奇算法或用于随机上下文无关文法的内外算法的形式,是估计用于生物序列分析的随机文法参数的有力方法。为了将此算法用于多序列进化建模,不仅将EM算法应用于估计随机文法的概率参数,而且应用于估计基础进化模型的瞬时突变率(以促进基于系统发育树的随机文法的开发,也称为统计比对)将是有用的。最近,我们展示了如何针对进化过程中的点替换成分做到这一点;在这里,我们将这些结果扩展到插入缺失过程。
我们提出了一种算法,用于在由于索恩、岸野和费尔斯滕森提出的单残基插入缺失模型(“TKF91”模型)下,使用EM从多序列比对中进行插入和缺失率的最大似然估计。该算法收敛极快,在模拟数据上给出的准确结果优于简约估计(简约估计被证明低估了真实的插入缺失率),并且在实验数据(冠状病毒包膜结构域)上给出了合理的结果。由于该算法与用于训练隐马尔可夫模型的鲍姆 - 韦尔奇算法非常相似,它可以以“无监督”方式用于估计未比对序列的速率,或估计具有异质速率的序列的几组速率。
实现该算法和基准测试的软件可在GPL许可下从http://www.biowiki.org/获得