Grudinin Sergei, Büldt Georg, Gordeliy Valentin, Baumgaertner Artur
Institute for Structural Biology (IBI-2), Forschungszentrum Jülich, Jülich, Germany.
Biophys J. 2005 May;88(5):3252-61. doi: 10.1529/biophysj.104.047993. Epub 2005 Feb 24.
Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is approximately 95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR.
蛋白质晶体学提供的是在数据收集期间所有基本晶胞上平均得到的蛋白质结构。因此,它对扩散过程的了解有限。本文展示了分子动力学模拟如何阐明细菌视紫红质(bR)中涉及水分子的结构 - 功能关系。通过分子动力学模拟研究了处于基态(G)和晚期M中间体构象的bR内部水分子的空间分布及其相应的氢键网络。模拟结果显示,每个单体内部水分子的平均数量(G态为28个,M态为36个)比晶体结构中观察到的要高得多(分别为18个和22个)。我们发现G单体内部有9个水分子被捕获且19个水分子扩散,M单体内部有13个水分子被捕获且23个水分子扩散。一组扩散性内部水分子的交换遵循指数衰减,G态的1/e时间约为340皮秒,M态为460皮秒。对于G态,扩散性水分子在蛋白质内部的平均停留时间约为95皮秒,对于M态为110皮秒。我们使用了Grotthuss模型来描述质子可能通过蛋白质内部氢键网络的传输,该网络是在皮秒到纳秒的时间域内形成的。通过比较两种不同状态的水分布和氢键网络,我们提出了bR内部质子跳跃和水移动的可能途径。