Suppr超能文献

细菌视紫红质中的水分子和氢键网络——基态和M中间体的分子动力学模拟

Water molecules and hydrogen-bonded networks in bacteriorhodopsin--molecular dynamics simulations of the ground state and the M-intermediate.

作者信息

Grudinin Sergei, Büldt Georg, Gordeliy Valentin, Baumgaertner Artur

机构信息

Institute for Structural Biology (IBI-2), Forschungszentrum Jülich, Jülich, Germany.

出版信息

Biophys J. 2005 May;88(5):3252-61. doi: 10.1529/biophysj.104.047993. Epub 2005 Feb 24.

Abstract

Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is approximately 95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR.

摘要

蛋白质晶体学提供的是在数据收集期间所有基本晶胞上平均得到的蛋白质结构。因此,它对扩散过程的了解有限。本文展示了分子动力学模拟如何阐明细菌视紫红质(bR)中涉及水分子的结构 - 功能关系。通过分子动力学模拟研究了处于基态(G)和晚期M中间体构象的bR内部水分子的空间分布及其相应的氢键网络。模拟结果显示,每个单体内部水分子的平均数量(G态为28个,M态为36个)比晶体结构中观察到的要高得多(分别为18个和22个)。我们发现G单体内部有9个水分子被捕获且19个水分子扩散,M单体内部有13个水分子被捕获且23个水分子扩散。一组扩散性内部水分子的交换遵循指数衰减,G态的1/e时间约为340皮秒,M态为460皮秒。对于G态,扩散性水分子在蛋白质内部的平均停留时间约为95皮秒,对于M态为110皮秒。我们使用了Grotthuss模型来描述质子可能通过蛋白质内部氢键网络的传输,该网络是在皮秒到纳秒的时间域内形成的。通过比较两种不同状态的水分布和氢键网络,我们提出了bR内部质子跳跃和水移动的可能途径。

相似文献

2
Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment.
Biophys J. 2004 Feb;86(2):705-17. doi: 10.1016/S0006-3495(04)74149-1.
4
Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.
Biophys J. 2002 May;82(5):2304-16. doi: 10.1016/S0006-3495(02)75576-8.
6
Potential proton-release channels in bacteriorhodopsin.
Chemphyschem. 2008 Dec 22;9(18):2751-8. doi: 10.1002/cphc.200800471.
9
Proton transfer via a transient linear water-molecule chain in a membrane protein.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11435-9. doi: 10.1073/pnas.1104735108. Epub 2011 Jun 27.

引用本文的文献

2
Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2040-5. doi: 10.1073/pnas.1409543112. Epub 2015 Feb 2.
3
Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps.
Comput Struct Biotechnol J. 2013 Mar 3;5:e201302008. doi: 10.5936/csbj.201302008. eCollection 2013.
4
Exploring cavity dynamics in biomolecular systems.
BMC Bioinformatics. 2013;14 Suppl 19(Suppl 19):S5. doi: 10.1186/1471-2105-14-S19-S5. Epub 2013 Nov 12.
5
Deprotonation of D96 in bacteriorhodopsin opens the proton uptake pathway.
Structure. 2013 Feb 5;21(2):290-7. doi: 10.1016/j.str.2012.12.018.
6
Molecular dynamics simulations reveal proton transfer pathways in cytochrome C-dependent nitric oxide reductase.
PLoS Comput Biol. 2012;8(8):e1002674. doi: 10.1371/journal.pcbi.1002674. Epub 2012 Aug 30.
7
Water pathways in the bacteriorhodopsin proton pump.
J Membr Biol. 2011 Jan;239(1-2):73-84. doi: 10.1007/s00232-010-9329-3. Epub 2010 Nov 28.
9
Dynamics of the internal water molecules in squid rhodopsin.
Biophys J. 2009 Apr 8;96(7):2572-6. doi: 10.1016/j.bpj.2008.12.3927.
10
Dynamics of voltage profile in enzymatic ion transporters, demonstrated in electrokinetics of proton pumping rhodopsin.
Biophys J. 2008 Dec;95(11):5005-13. doi: 10.1529/biophysj.107.125260. Epub 2008 Jul 11.

本文引用的文献

1
An all atom force field for simulations of proteins and nucleic acids.
J Comput Chem. 1986 Apr;7(2):230-252. doi: 10.1002/jcc.540070216.
4
Bacteriorhodopsin.
Annu Rev Physiol. 2004;66:665-88. doi: 10.1146/annurev.physiol.66.032102.150049.
5
Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment.
Biophys J. 2004 Feb;86(2):705-17. doi: 10.1016/S0006-3495(04)74149-1.
7
Proton affinity changes driving unidirectional proton transport in the bacteriorhodopsin photocycle.
J Mol Biol. 2003 Oct 3;332(5):1183-93. doi: 10.1016/s0022-2836(03)00903-3.
8
Calculation of proton transfers in Bacteriorhodopsin bR and M intermediates.
Biochemistry. 2003 Aug 26;42(33):9875-88. doi: 10.1021/bi034482d.
9
Structural changes during the formation of early intermediates in the bacteriorhodopsin photocycle.
Biophys J. 2002 Sep;83(3):1281-97. doi: 10.1016/S0006-3495(02)73900-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验