Theoretical Molecular Science Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan.
PLoS Comput Biol. 2012;8(8):e1002674. doi: 10.1371/journal.pcbi.1002674. Epub 2012 Aug 30.
Nitric oxide reductases (NORs) are membrane proteins that catalyze the reduction of nitric oxide (NO) to nitrous oxide (N(2)O), which is a critical step of the nitrate respiration process in denitrifying bacteria. Using the recently determined first crystal structure of the cytochrome c-dependent NOR (cNOR) [Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, et al. (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330: 1666-70.], we performed extensive all-atom molecular dynamics (MD) simulations of cNOR within an explicit membrane/solvent environment to fully characterize water distribution and dynamics as well as hydrogen-bonded networks inside the protein, yielding the atomic details of functionally important proton channels. Simulations reveal two possible proton transfer pathways leading from the periplasm to the active site, while no pathways from the cytoplasmic side were found, consistently with the experimental observations that cNOR is not a proton pump. One of the pathways, which was newly identified in the MD simulation, is blocked in the crystal structure and requires small structural rearrangements to allow for water channel formation. That pathway is equivalent to the functional periplasmic cavity postulated in cbb(3) oxidase, which illustrates that the two enzymes share some elements of the proton transfer mechanisms and confirms a close evolutionary relation between NORs and C-type oxidases. Several mechanisms of the critical proton transfer steps near the catalytic center are proposed.
一氧化氮还原酶(NORs)是一种膜蛋白,能够催化一氧化氮(NO)还原为笑气(N2O),这是反硝化细菌硝酸盐呼吸过程中的关键步骤。利用最近确定的细胞色素 c 依赖型 NOR(cNOR)的首个晶体结构[Hino T、Matsumoto Y、Nagano S、Sugimoto H、Fukumori Y 等人(2010 年)细菌一氧化氮还原酶产生生物 N2O 的结构基础。科学 330:1666-70],我们在明确的膜/溶剂环境中对 cNOR 进行了广泛的全原子分子动力学(MD)模拟,以全面描述蛋白质内部的水分布和动力学以及氢键网络,从而获得功能重要质子通道的原子细节。模拟揭示了两条可能的质子传递途径,一条从周质到活性部位,而没有发现从细胞质侧的途径,这与实验观察一致,即 cNOR 不是质子泵。在 MD 模拟中发现的一条新途径在晶体结构中被阻断,需要进行小的结构重排才能允许水通道形成。该途径与 cbb(3)氧化酶中的功能性周质腔等效,这表明这两种酶共享一些质子转移机制的元素,并证实了 NORs 和 C 型氧化酶之间的密切进化关系。提出了几个催化中心附近关键质子转移步骤的机制。