Suppr超能文献

细菌视紫红质三聚体和单体状态下主要事件动力学的比较。

Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states.

作者信息

Wang Jianping, Link Stephan, Heyes Colin D, El-Sayed Mostafa A

机构信息

Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 USA.

出版信息

Biophys J. 2002 Sep;83(3):1557-66. doi: 10.1016/S0006-3495(02)73925-8.

Abstract

In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.

摘要

在本文中,利用光谱可见区域的飞秒泵浦-探测光谱技术研究了细菌视紫红质(bR)天然三聚体状态和单体状态下视网膜激发态的超快动力学。研究发现,bR单体化后,激发态寿命(在490nm处探测)仅略有增加。在570nm处探测的bR基态恢复过程以及在850nm处观察到的荧光状态中,均未观察到明显的动力学差异。然而,在单体中观察到bR激发态衰减慢成分的相对幅度增加,这是由于光适应bR单体基态中13-顺式视黄醛异构体浓度增加所致。我们的数据表明,当bR单体化导致视网膜周围的蛋白质堆积发生变化时,视网膜势能面仅有细微变化,这取决于视网膜结合腔内的电荷分布和偶极子。此外,我们的结果表明,40%的激发态bR分子在三个不同的时间尺度上回到基态:激发态弛豫和J中间体形成过程中的半皮秒成分,J转变为发生视网膜光异构化的K中间体时的3皮秒成分,以及光循环过程中的亚纳秒成分。

相似文献

2
Dynamics of primary events in the photocycle of excited bacteriorhodopsin.
Acta Biochim Biophys Sin (Shanghai). 2004 Nov;36(11):724-8. doi: 10.1093/abbs/36.11.724.
5
Primary picosecond molecular events in the photoreaction of the BR5.12 artificial bacteriorhodopsin pigment.
Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2101-5. doi: 10.1073/pnas.92.6.2101.
7
Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle.
Biophys J. 1989 Feb;55(2):263-74. doi: 10.1016/S0006-3495(89)82801-2.
9
Decay of the tryptophan fluorescence anisotropy in bacteriorhodopsin and its modified forms.
Biophys J. 1990 Apr;57(4):759-64. doi: 10.1016/S0006-3495(90)82596-0.
10
Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin.
Biochemistry. 1991 Feb 19;30(7):1751-61. doi: 10.1021/bi00221a004.

引用本文的文献

1
Study of a Bacteriorhodopsin/TiO Hybrid System at the Molecular Level.
J Chem Theory Comput. 2025 Mar 25;21(6):3231-3245. doi: 10.1021/acs.jctc.4c01370. Epub 2025 Mar 4.
3
Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability.
J Phys Chem B. 2023 Mar 16;127(10):2128-2137. doi: 10.1021/acs.jpcb.2c07502. Epub 2023 Mar 1.
4
Bidirectional Photochemistry of Antarctic Microbial Rhodopsin: Emerging Trend of Ballistic Photoisomerization from the 13- Resting State.
J Phys Chem Lett. 2022 Sep 1;13(34):8134-8140. doi: 10.1021/acs.jpclett.2c01974. Epub 2022 Aug 24.
5
Roles of functional lipids in bacteriorhodopsin photocycle in various delipidated purple membranes.
Biophys J. 2022 May 17;121(10):1789-1798. doi: 10.1016/j.bpj.2022.04.022. Epub 2022 Apr 18.
6
X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin.
Sci Rep. 2019 Aug 2;9(1):11283. doi: 10.1038/s41598-019-47445-5.
7
Tuning the Photocycle Kinetics of Bacteriorhodopsin in Lipid Nanodiscs.
Biophys J. 2015 Nov 3;109(9):1899-906. doi: 10.1016/j.bpj.2015.09.012.
9
Nanodiscs allow phage display selection for ligands to non-linear epitopes on membrane proteins.
PLoS One. 2013 Sep 9;8(9):e72272. doi: 10.1371/journal.pone.0072272. eCollection 2013.
10
Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential.
J Phys Chem B. 2012 Dec 20;116(50):14592-601. doi: 10.1021/jp309996a. Epub 2012 Dec 11.

本文引用的文献

1
CD spectrum of bacteriorhodopsin: Best evidence against exciton model.
Biophys J. 1991 Jul;60(1):190-7. doi: 10.1016/S0006-3495(91)82042-2.
3
Early picosecond events in the photocycle of bacteriorhodopsin.
Biophys J. 1986 Mar;49(3):651-62. doi: 10.1016/S0006-3495(86)83692-X.
5
Is there an excitonic interaction or antenna system in bacteriorhodopsin?
Proc Natl Acad Sci U S A. 1989 Jul;86(14):5376-9. doi: 10.1073/pnas.86.14.5376.
6
Importance of bound divalent cations to the tyrosine deprotonation during the photocycle of bacteriorhodopsin.
Proc Natl Acad Sci U S A. 1985 Jun;82(11):3662-4. doi: 10.1073/pnas.82.11.3662.
7
The relaxation dynamics of the excited electronic states of retinal in bacteriorhodopsin by two-pump-probe femtosecond studies.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8475-9. doi: 10.1073/pnas.141220198. Epub 2001 Jul 10.
9
Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization.
Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9379-84. doi: 10.1073/pnas.97.17.9379.
10
Local and distant protein structural changes on photoisomerization of the retinal in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4643-8. doi: 10.1073/pnas.080064797.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验