Suppr超能文献

利用激光极化129Xe核磁共振区分多种趋化性Y蛋白构象。

Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR.

作者信息

Lowery Thomas J, Doucleff Michaeleen, Ruiz E Janette, Rubin Seth M, Pines Alexander, Wemmer David E

机构信息

Physical Biosciences Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.

出版信息

Protein Sci. 2005 Apr;14(4):848-55. doi: 10.1110/ps.041231005. Epub 2005 Mar 1.

Abstract

The chemical shift of the (129)Xe NMR signal has been shown to be extremely sensitive to the local environment around the atom and has been used to follow processes such as ligand binding by bacterial periplasmic binding proteins. Here we show that the (129)Xe shift can sense more subtle changes: magnesium binding, BeF(3)(-) activation, and peptide binding by the Escherichia coli chemotaxis Y protein. (1)H-(15)N correlation spectroscopy and X-ray crystallography were used to identify two xenon-binding cavities in CheY that are primarily responsible for the shift changes. One site is near the active site, and the other is near the peptide binding site.

摘要

已证明¹²⁹Xe核磁共振信号的化学位移对该原子周围的局部环境极为敏感,并已用于追踪诸如细菌周质结合蛋白的配体结合等过程。在此我们表明,¹²⁹Xe位移能够感知更细微的变化:镁离子结合、BeF₃⁻激活以及大肠杆菌趋化性Y蛋白的肽结合。利用¹H-¹⁵N相关光谱和X射线晶体学确定了CheY中两个主要导致位移变化的氙结合腔。一个位点靠近活性位点,另一个位点靠近肽结合位点。

相似文献

1
Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR.
Protein Sci. 2005 Apr;14(4):848-55. doi: 10.1110/ps.041231005. Epub 2005 Mar 1.
2
Detection of multiple protein conformations by laser-polarized xenon.
Protein Sci. 2005 Apr;14(4):847. doi: 10.1110/ps.051398705.
3
Structural investigation of pig metmyoglobin by 129Xe NMR spectroscopy.
Biochim Biophys Acta. 2004 Sep 24;1674(2):182-92. doi: 10.1016/j.bbagen.2004.06.011.
5
Applications of laser-polarized 129Xe to biomolecular assays.
Magn Reson Imaging. 2003 Dec;21(10):1235-9. doi: 10.1016/j.mri.2003.08.025.
6
Beryllofluoride binding mimics phosphorylation of aspartate in response regulators.
J Bacteriol. 2005 Dec;187(24):8229-30. doi: 10.1128/JB.187.24.8229-8230.2005.
7
NMR structure of activated CheY.
J Mol Biol. 2000 Mar 31;297(3):543-51. doi: 10.1006/jmbi.2000.3595.
8
Crystal structure of activated CheY. Comparison with other activated receiver domains.
J Biol Chem. 2001 May 11;276(19):16425-31. doi: 10.1074/jbc.M101002200. Epub 2001 Feb 13.
9
Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM.
J Bacteriol. 2006 Nov;188(21):7354-63. doi: 10.1128/JB.00637-06.
10
Xenon-Protein Interactions: Characterization by X-Ray Crystallography and Hyper-CEST NMR.
Methods Enzymol. 2018;602:249-272. doi: 10.1016/bs.mie.2018.02.005. Epub 2018 Mar 15.

引用本文的文献

1
Revisiting the Effects of Xenon on Urate Oxidase and Tissue Plasminogen Activator: No Evidence for Inhibition by Noble Gases.
Front Mol Biosci. 2020 Sep 11;7:574477. doi: 10.3389/fmolb.2020.574477. eCollection 2020.
2
A Structural Basis for Xe Hyper-CEST Signal in TEM-1 β-Lactamase.
Chemphyschem. 2019 Jan 21;20(2):260-267. doi: 10.1002/cphc.201800624. Epub 2018 Sep 13.
3
Xenon-Protein Interactions: Characterization by X-Ray Crystallography and Hyper-CEST NMR.
Methods Enzymol. 2018;602:249-272. doi: 10.1016/bs.mie.2018.02.005. Epub 2018 Mar 15.
4
NMR Hyperpolarization Techniques of Gases.
Chemistry. 2017 Jan 18;23(4):725-751. doi: 10.1002/chem.201603884. Epub 2016 Dec 5.
5
Capturing cooperative interactions with the PSI-MI format.
Database (Oxford). 2013 Sep 25;2013:bat066. doi: 10.1093/database/bat066. Print 2013.
8
Probing the equilibrium unfolding of ketosteroid isomerase through xenon-perturbed 1H-15N multidimensional NMR spectroscopy.
J Biomol NMR. 2008 Jan;40(1):65-70. doi: 10.1007/s10858-007-9209-z. Epub 2007 Nov 15.
9
Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations.
Biophys J. 2007 Mar 15;92(6):2062-79. doi: 10.1529/biophysj.106.081950. Epub 2006 Dec 15.
10
Anesthesia, analgesia, and euphoria.
Biophys J. 2007 Jan 1;92(1):1-2. doi: 10.1529/biophysj.106.096503. Epub 2006 Oct 6.

本文引用的文献

1
Exploring surfaces and cavities in lipoxygenase and other proteins by hyperpolarized xenon-129 NMR.
J Am Chem Soc. 1999 Oct 13;121(40):9370-7. doi: 10.1021/ja991443+.
2
Design of a conformation-sensitive xenon-binding cavity in the ribose-binding protein.
Angew Chem Int Ed Engl. 2004 Nov 26;43(46):6320-2. doi: 10.1002/anie.200460629.
3
Automated protein crystal structure determination using ELVES.
Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1537-42. doi: 10.1073/pnas.0306241101. Epub 2004 Jan 29.
4
Applications of laser-polarized 129Xe to biomolecular assays.
Magn Reson Imaging. 2003 Dec;21(10):1235-9. doi: 10.1016/j.mri.2003.08.025.
6
Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy.
J Mol Biol. 2002 Sep 13;322(2):425-40. doi: 10.1016/s0022-2836(02)00739-8.
7
Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms.
J Magn Reson. 2002 Apr;155(2):157-216. doi: 10.1006/jmre.2001.2341.
8
Functionalized xenon as a biosensor.
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10654-7. doi: 10.1073/pnas.191368398. Epub 2001 Sep 4.
10
Detection of a conformational change in maltose binding protein by (129)Xe NMR spectroscopy.
J Am Chem Soc. 2001 Sep 5;123(35):8616-7. doi: 10.1021/ja0110325.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验