Suppr超能文献

TEM-1 β-内酰胺酶中氙超化学交换饱和转移(Xe Hyper-CEST)信号的结构基础

A Structural Basis for Xe Hyper-CEST Signal in TEM-1 β-Lactamase.

作者信息

Roose Benjamin W, Zemerov Serge D, Wang Yanfei, Kasimova Marina A, Carnevale Vincenzo, Dmochowski Ivan J

机构信息

Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104.

Harvard Medical School, 300 Longwood Ave, Boston, MA 02115.

出版信息

Chemphyschem. 2019 Jan 21;20(2):260-267. doi: 10.1002/cphc.201800624. Epub 2018 Sep 13.

Abstract

Genetically encoded (GE) contrast agents detectable by magnetic resonance imaging (MRI) enable non-invasive visualization of gene expression and cell proliferation at virtually unlimited penetration depths. Using hyperpolarized Xe in combination with chemical exchange saturation transfer, an MR contrast approach known as hyper-CEST, enables ultrasensitive protein detection and biomolecular imaging. GE MRI contrast agents developed to date include nanoscale proteinaceous gas vesicles as well as the monomeric bacterial proteins TEM-1 β-lactamase (bla) and maltose binding protein (MBP). To improve understanding of hyper-CEST NMR with proteins, structural and computational studies were performed to further characterize the Xe-bla interaction. X-ray crystallography validated the location of a high-occupancy Xe binding site predicted by MD simulations, and mutagenesis experiments confirmed this Xe site as the origin of the observed CEST contrast. Structural studies and MD simulations with representative bla mutants offered additional insight regarding the relationship between local protein structure and CEST contrast.

摘要

通过磁共振成像(MRI)可检测的基因编码(GE)造影剂能够在几乎不受限制的穿透深度下对基因表达和细胞增殖进行无创可视化。使用超极化氙结合化学交换饱和转移,一种称为超CEST的磁共振造影方法能够实现超灵敏的蛋白质检测和生物分子成像。迄今为止开发的GE MRI造影剂包括纳米级蛋白质气体囊泡以及单体细菌蛋白TEM-1β-内酰胺酶(bla)和麦芽糖结合蛋白(MBP)。为了更好地理解蛋白质的超CEST NMR,进行了结构和计算研究以进一步表征氙-bla相互作用。X射线晶体学验证了分子动力学模拟预测的高占有率氙结合位点的位置,诱变实验证实该氙位点是观察到的CEST造影的来源。对代表性bla突变体的结构研究和分子动力学模拟提供了关于局部蛋白质结构与CEST造影之间关系的更多见解。

相似文献

1
A Structural Basis for Xe Hyper-CEST Signal in TEM-1 β-Lactamase.
Chemphyschem. 2019 Jan 21;20(2):260-267. doi: 10.1002/cphc.201800624. Epub 2018 Sep 13.
2
An Expanded Palette of Xenon-129 NMR Biosensors.
Acc Chem Res. 2016 Oct 18;49(10):2179-2187. doi: 10.1021/acs.accounts.6b00309. Epub 2016 Sep 19.
3
A Genetically Encoded β-Lactamase Reporter for Ultrasensitive (129) Xe NMR in Mammalian Cells.
Angew Chem Int Ed Engl. 2016 Jul 25;55(31):8984-7. doi: 10.1002/anie.201604055. Epub 2016 Jun 15.
4
Xenon-Protein Interactions: Characterization by X-Ray Crystallography and Hyper-CEST NMR.
Methods Enzymol. 2018;602:249-272. doi: 10.1016/bs.mie.2018.02.005. Epub 2018 Mar 15.
5
Nanomolar small-molecule detection using a genetically encoded Xe NMR contrast agent.
Chem Sci. 2017 Nov 1;8(11):7631-7636. doi: 10.1039/c7sc03601a. Epub 2017 Sep 20.
6
Quantitative evaluation of pulmonary gas-exchange function using hyperpolarized Xe CEST MRS and MRI.
NMR Biomed. 2018 Sep;31(9):e3961. doi: 10.1002/nbm.3961. Epub 2018 Jul 24.
7
Continuous-wave saturation considerations for efficient xenon depolarization.
NMR Biomed. 2015 Jun;28(6):601-6. doi: 10.1002/nbm.3307. Epub 2015 Apr 21.
8
Programming xenon diffusion in maltose-binding protein.
Biophys J. 2022 Dec 6;121(23):4635-4643. doi: 10.1016/j.bpj.2022.10.025. Epub 2022 Oct 20.
9
Protein Nanostructures Produce Self-Adjusting Hyperpolarized Magnetic Resonance Imaging Contrast through Physical Gas Partitioning.
ACS Nano. 2018 Nov 27;12(11):10939-10948. doi: 10.1021/acsnano.8b04222. Epub 2018 Sep 17.

引用本文的文献

1
Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2435365. doi: 10.1080/14756366.2024.2435365. Epub 2024 Dec 23.
2
Local Xenon-Protein Interaction Produces Global Conformational Change and Allosteric Inhibition in Lysozyme.
Biochemistry. 2023 Jun 6;62(11):1659-1669. doi: 10.1021/acs.biochem.3c00046. Epub 2023 May 16.
3
Rational design of a genetically encoded NMR zinc sensor.
Chem Sci. 2023 Mar 13;14(14):3809-3815. doi: 10.1039/d3sc00437f. eCollection 2023 Apr 5.
4
Programming xenon diffusion in maltose-binding protein.
Biophys J. 2022 Dec 6;121(23):4635-4643. doi: 10.1016/j.bpj.2022.10.025. Epub 2022 Oct 20.
6
Cryptophane-xenon complexes for Xe MRI applications.
RSC Adv. 2021;11(13):7693-7703. doi: 10.1039/d0ra10765d. Epub 2021 Feb 17.
8
Molecular Sensing with Host Systems for Hyperpolarized Xe.
Molecules. 2020 Oct 11;25(20):4627. doi: 10.3390/molecules25204627.
9
Xe NMR-Protein Sensor Reveals Cellular Ribose Concentration.
Anal Chem. 2020 Oct 6;92(19):12817-12824. doi: 10.1021/acs.analchem.0c00967. Epub 2020 Sep 23.
10
Detecting protein-protein interactions by Xe-129 NMR.
Chem Commun (Camb). 2020 Sep 22;56(75):11122-11125. doi: 10.1039/d0cc02988b.

本文引用的文献

1
Xe affinities of water-soluble cryptophanes and the role of confined water.
Chem Sci. 2015 Dec 1;6(12):7238-7248. doi: 10.1039/c5sc02401c. Epub 2015 Sep 22.
2
Nanomolar small-molecule detection using a genetically encoded Xe NMR contrast agent.
Chem Sci. 2017 Nov 1;8(11):7631-7636. doi: 10.1039/c7sc03601a. Epub 2017 Sep 20.
3
NMR Hyperpolarization Techniques of Gases.
Chemistry. 2017 Jan 18;23(4):725-751. doi: 10.1002/chem.201603884. Epub 2016 Dec 5.
4
Targeted Molecular Imaging of Cancer Cells Using MS2-Based (129)Xe NMR.
Bioconjug Chem. 2016 Aug 17;27(8):1796-801. doi: 10.1021/acs.bioconjchem.6b00275. Epub 2016 Aug 1.
5
A Genetically Encoded β-Lactamase Reporter for Ultrasensitive (129) Xe NMR in Mammalian Cells.
Angew Chem Int Ed Engl. 2016 Jul 25;55(31):8984-7. doi: 10.1002/anie.201604055. Epub 2016 Jun 15.
6
Programming A Molecular Relay for Ultrasensitive Biodetection through (129)Xe NMR.
Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1733-6. doi: 10.1002/anie.201508990. Epub 2015 Dec 21.
7
Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation.
J Lipid Res. 2015 Dec;56(12):2348-58. doi: 10.1194/jlr.M063388. Epub 2015 Oct 7.
8
Cucurbit[6]uril is an ultrasensitive (129)Xe NMR contrast agent.
Chem Commun (Camb). 2015 May 28;51(43):8982-5. doi: 10.1039/c5cc01826a.
9
Discovery of multiple hidden allosteric sites by combining Markov state models and experiments.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2734-9. doi: 10.1073/pnas.1417811112. Epub 2015 Feb 17.
10
Substrate pathways in the nitrogenase MoFe protein by experimental identification of small molecule binding sites.
Biochemistry. 2015 Mar 24;54(11):2052-60. doi: 10.1021/bi501313k. Epub 2015 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验