Suppr超能文献

细菌生物膜内生物源氧化锰生成的空间分辨表征

Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm.

作者信息

Toner Brandy, Fakra Sirine, Villalobos Mario, Warwick Tony, Sposito Garrison

机构信息

Department of Environmental Science, Policy and Management, Division of Ecosystem Sciences, University of California, CA, USA.

出版信息

Appl Environ Microbiol. 2005 Mar;71(3):1300-10. doi: 10.1128/AEM.71.3.1300-1310.2005.

Abstract

Pseudomonas putida strain MnB1, a biofilm-forming bacterial culture, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of aqueous Mn+2 [Mn+2(aq)] by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm, using scanning transmission X-ray microscopy (STXM) combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Mn L2,3 absorption edges. Subsamples were collected from growth flasks containing 0.1 and 1 mM total Mn at 16, 24, 36, and 48 h after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at a 40-nm resolution. Manganese NEXAFS spectra were extracted from X-ray energy sequences of STXM images (stacks) and fit with linear combinations of well-characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III), and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn+2(aq) was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission X-ray microscopy is a promising tool for advancing the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.

摘要

恶臭假单胞菌MnB1菌株是一种能形成生物膜的细菌培养物,被用作研究淡水和土壤环境中细菌锰氧化的模型。利用扫描透射X射线显微镜(STXM)结合锰L2,3吸收边的近边X射线吸收精细结构(NEXAFS)光谱,通过在细菌生物膜存在的情况下对锰的氧化态进行空间和时间分辨,对恶臭假单胞菌对水溶液中Mn+2 [Mn+2(aq)]的氧化进行了表征。在接种后16、24、36和48小时,从含有0.1和1 mM总锰的生长瓶中收集子样本。收集后立即对未处理的水合子样本进行40纳米分辨率的成像。从STXM图像(堆栈)的X射线能量序列中提取锰NEXAFS光谱,并与特征明确的参考光谱的线性组合进行拟合,以获得Mn(II)、Mn(III)和Mn(IV)的定量相对丰度。仔细考虑了参考光谱归一化的不确定性、参考化合物的选择以及辐射损伤引起的化学变化。STXM结果证实,恶臭假单胞菌从溶液中去除了Mn+2(aq),并在紧邻细菌细胞的位置浓缩为Mn(III)和Mn(IV)。锰沉淀物被细菌生物膜材料完全包裹。锰氧化态的分布在细菌细胞簇内部和之间存在空间异质性。扫描透射X射线显微镜是推进矿物与细菌之间水合界面研究的一种有前途的工具,特别是在需要保持细菌生物膜结构的情况下。

相似文献

1
Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm.
Appl Environ Microbiol. 2005 Mar;71(3):1300-10. doi: 10.1128/AEM.71.3.1300-1310.2005.
3
Molecular response to the influences of Cu(II) and Fe(III) on forming biogenic manganese oxides by Pseudomonas putida MnB1.
J Hazard Mater. 2024 Sep 15;477:135298. doi: 10.1016/j.jhazmat.2024.135298. Epub 2024 Jul 22.
6
Removal of multi-heavy metals using biogenic manganese oxides generated by a deep-sea sedimentary bacterium - Brachybacterium sp. strain Mn32.
Microbiology (Reading). 2009 Jun;155(Pt 6):1989-1996. doi: 10.1099/mic.0.024141-0. Epub 2009 Apr 21.
7
Production of biogenic manganese oxides by repeated-batch cultures of laboratory microcosms.
J Biosci Bioeng. 2007 May;103(5):432-9. doi: 10.1263/jbb.103.432.
8
10
Bacteriogenic manganese oxides.
Acc Chem Res. 2010 Jan 19;43(1):2-9. doi: 10.1021/ar800232a.

引用本文的文献

1
Population-level control of two manganese oxidases expands the niche for bacterial manganese biomineralization.
NPJ Biofilms Microbiomes. 2025 Mar 24;11(1):50. doi: 10.1038/s41522-025-00670-5.
2
Organic buffers act as reductants of abiotic and biogenic manganese oxides.
Sci Rep. 2023 Apr 20;13(1):6498. doi: 10.1038/s41598-023-32691-5.
3
Biologically Assisted One-Step Synthesis of Electrode Materials for Li-Ion Batteries.
Microorganisms. 2023 Feb 27;11(3):603. doi: 10.3390/microorganisms11030603.
5
Diversity of Mixotrophic Neutrophilic Thiosulfate- and Iron-Oxidizing Bacteria from Deep-Sea Hydrothermal Vents.
Microorganisms. 2022 Dec 30;11(1):100. doi: 10.3390/microorganisms11010100.
6
Microbially Induced Mineralization of Layered Mn Oxides Electroactive in Li Batteries.
Front Microbiol. 2020 Sep 10;11:2031. doi: 10.3389/fmicb.2020.02031. eCollection 2020.
8
Regulates Biofilm Development of MnB1 as a Primary Response to HO and Mn.
Front Microbiol. 2018 Jul 10;9:1490. doi: 10.3389/fmicb.2018.01490. eCollection 2018.
9
Preparation and representation of recombinant Mn-ferritin flower-like spherical aggregates from marine invertebrates.
PLoS One. 2015 Apr 16;10(4):e0119427. doi: 10.1371/journal.pone.0119427. eCollection 2015.
10
Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(II) oxidation by Pseudomonas putida GB-1.
Front Microbiol. 2014 Jun 25;5:301. doi: 10.3389/fmicb.2014.00301. eCollection 2014.

本文引用的文献

1
The effect of Ca ions and ionic strength on Mn(II) oxidation by spores of the marine sp. SG-1.
Geochim Cosmochim Acta. 2013 Jan 15;101:1-11. doi: 10.1016/j.gca.2012.10.008. Epub 2012 Oct 3.
2
Reactions at Oxide Surfaces. 1. Oxidation of As(III) by Synthetic Birnessite.
Environ Sci Technol. 1995 Aug 1;29(8):1898-905. doi: 10.1021/es00008a006.
3
Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp.
Appl Environ Microbiol. 1992 Apr;58(4):1284-91. doi: 10.1128/aem.58.4.1284-1291.1992.
4
Reduction of colloidal manganese dioxide by manganese(II).
J Colloid Interface Sci. 2002 Apr 1;248(1):130-5. doi: 10.1006/jcis.2001.8145.
5
Microbial polysaccharides template assembly of nanocrystal fibers.
Science. 2004 Mar 12;303(5664):1656-8. doi: 10.1126/science.1092098.
6
Biofilm hydrous manganese oxyhydroxides and metal dynamics in acid rock drainage.
Environ Sci Technol. 2003 Sep 15;37(18):4138-47. doi: 10.1021/es026274z.
7
Soft X-ray radiation-damage studies in PMMA using a cryo-STXM.
J Synchrotron Radiat. 2003 May 1;10(Pt 3):280-3. doi: 10.1107/s0909049503003261. Epub 2003 Apr 25.
8
Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source.
J Synchrotron Radiat. 2003 Mar 1;10(Pt 2):125-36. doi: 10.1107/s0909049502017739. Epub 2003 Feb 27.
10
Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7.
Environ Microbiol. 2001 Dec;3(12):774-84. doi: 10.1046/j.1462-2920.2001.00248.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验