Athale Chaitanya, Mansury Yuri, Deisboeck Thomas S
Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.
J Theor Biol. 2005 Apr 21;233(4):469-81. doi: 10.1016/j.jtbi.2004.10.019. Epub 2004 Nov 30.
Experimental evidence indicates that human brain cancer cells proliferate or migrate, yet do not display both phenotypes at the same time. Here, we present a novel computational model simulating this cellular decision-process leading up to either phenotype based on a molecular interaction network of genes and proteins. The model's regulatory network consists of the epidermal growth factor receptor (EGFR), its ligand transforming growth factor-alpha (TGF alpha), the downstream enzyme phospholipaseC-gamma (PLC gamma) and a mitosis-associated response pathway. This network is activated by autocrine TGF alpha secretion, and the EGFR-dependent downstream signaling this step triggers, as well as modulated by an extrinsic nutritive glucose gradient. Employing a framework of mass action kinetics within a multiscale agent-based environment, we analyse both the emergent multicellular behavior of tumor growth and the single-cell molecular profiles that change over time and space. Our results show that one can indeed simulate the dichotomy between cell migration and proliferation based solely on an EGFR decision network. It turns out that these behavioral decisions on the single cell level impact the spatial dynamics of the entire cancerous system. Furthermore, the simulation results yield intriguing experimentally testable hypotheses also on the sub-cellular level such as spatial cytosolic polarization of PLC gamma towards an extrinsic chemotactic gradient. Implications of these results for future works, both on the modeling and experimental side are discussed.
实验证据表明,人类脑癌细胞会增殖或迁移,但不会同时表现出这两种表型。在此,我们提出了一种新颖的计算模型,该模型基于基因和蛋白质的分子相互作用网络,模拟导致这两种表型之一的细胞决策过程。该模型的调控网络由表皮生长因子受体(EGFR)、其配体转化生长因子-α(TGFα)、下游酶磷脂酶C-γ(PLCγ)和有丝分裂相关反应途径组成。该网络由自分泌TGFα分泌激活,以及这一步骤触发的EGFR依赖性下游信号传导,并受外在营养性葡萄糖梯度调节。在基于多尺度智能体的环境中采用质量作用动力学框架,我们分析了肿瘤生长的涌现多细胞行为以及随时间和空间变化的单细胞分子谱。我们的结果表明,确实可以仅基于EGFR决策网络模拟细胞迁移和增殖之间的二分法。事实证明,这些单细胞水平的行为决策会影响整个癌症系统的空间动态。此外,模拟结果还在亚细胞水平上产生了有趣的可实验检验的假设,例如PLCγ朝着外在趋化梯度的空间胞质极化。讨论了这些结果对未来建模和实验工作的影响。