Suppr超能文献

基于图和知识传播的微钙化检测新协同分类过程。

A New Collaborative Classification Process for Microcalcification Detection Based on Graphs and Knowledge Propagation.

机构信息

Université de Sousse, Ecole Nationale d'Ingénieurs de Sousse, LATIS-Laboratory of Advanced Technology and Intelligent Systems, Sousse, 4023, Tunisia.

Université de Sousse, Supérieur d'Informatique et des Techniques de Communication, Hammam Sousse, 4011, Tunisia.

出版信息

J Digit Imaging. 2022 Dec;35(6):1560-1575. doi: 10.1007/s10278-022-00678-9. Epub 2022 Aug 1.

Abstract

In this paper, we propose a new collaborative process that aims to detect macrocalcifications from mammographic images while minimizing false negative detections. This process is made up of three main phases: suspicious area detection, candidate object identification, and collaborative classification. The main concept is to operate on the entire image divided into homogenous regions called superpixels which are used to identify both suspicious areas and candidate objects. The collaborative classification phase consists in making the initial results of different microcalcification detectors collaborate in order to produce a new common decision and reduce their initial disagreements. The detectors share the information about their detected objects and associated labels in order to refine their initial decisions based on those of the other collaborators. This refinement consists of iteratively updating the candidate object labels of each detector following local and contextual analyses based on prior knowledge about the links between super pixels and macrocalcifications. This process iteratively reduces the disagreement between different detectors and estimates local reliability terms for each super pixel. The final result is obtained by a conjunctive combination of the new detector decisions reached by the collaborative process. The proposed approach is evaluated on the publicly available INBreast dataset. Experimental results show the benefits gained in terms of improving microcalcification detection performances compared to existing detectors as well as ordinary fusion operators.

摘要

在本文中,我们提出了一种新的协作过程,旨在从乳腺图像中检测出大钙化,同时尽量减少假阴性检测。该过程由三个主要阶段组成:可疑区域检测、候选对象识别和协作分类。主要思想是对整个图像进行操作,将其划分为同质区域,称为超像素,用于识别可疑区域和候选对象。协作分类阶段涉及让不同的微钙化检测器的初始结果协作,以产生新的共同决策并减少它们的初始分歧。检测器共享有关其检测到的对象及其相关标签的信息,以便根据其他协作者的信息来完善其初始决策。这种完善包括根据关于超像素和大钙化之间关系的先验知识,对每个检测器的候选对象标签进行局部和上下文分析,从而迭代更新。该过程迭代地减少了不同检测器之间的分歧,并估计了每个超像素的局部可靠性项。最终结果是通过协作过程达到的新检测器决策的联合组合获得的。该方法在公开可用的 INBreast 数据集上进行了评估。实验结果表明,与现有检测器和普通融合算子相比,在提高微钙化检测性能方面取得了收益。

相似文献

1
A New Collaborative Classification Process for Microcalcification Detection Based on Graphs and Knowledge Propagation.
J Digit Imaging. 2022 Dec;35(6):1560-1575. doi: 10.1007/s10278-022-00678-9. Epub 2022 Aug 1.
2
Multiscale connected chain topological modelling for microcalcification classification.
Comput Biol Med. 2019 Nov;114:103422. doi: 10.1016/j.compbiomed.2019.103422. Epub 2019 Sep 5.
3
Topological modeling and classification of mammographic microcalcification clusters.
IEEE Trans Biomed Eng. 2015 Apr;62(4):1203-14. doi: 10.1109/TBME.2014.2385102.
5
A shortcut weighted fusion pyramid network for microcalcification detection in breast mammograms.
Technol Health Care. 2023;31(3):841-853. doi: 10.3233/THC-220235.
6
Microcalcification detection using cone-beam CT mammography with a flat-panel imager.
Phys Med Biol. 2004 Jun 7;49(11):2183-95. doi: 10.1088/0031-9155/49/11/005.
8
A Screening CAD Tool for the Detection of Microcalcification Clusters in Mammograms.
J Digit Imaging. 2019 Oct;32(5):728-745. doi: 10.1007/s10278-019-00249-5.
9
Classification of Mammographic ROI for Microcalcification Detection Using Multifractal Approach.
J Digit Imaging. 2022 Dec;35(6):1544-1559. doi: 10.1007/s10278-022-00677-w. Epub 2022 Jul 19.

本文引用的文献

1
A machine learning approach on multiscale texture analysis for breast microcalcification diagnosis.
BMC Bioinformatics. 2020 Mar 11;21(Suppl 2):91. doi: 10.1186/s12859-020-3358-4.
2
Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network from Digital Mammograms.
Comput Math Methods Med. 2019 Mar 3;2019:2717454. doi: 10.1155/2019/2717454. eCollection 2019.
4
Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection.
Comput Biol Med. 2017 Jun 1;85:86-97. doi: 10.1016/j.compbiomed.2017.04.012. Epub 2017 Apr 18.
6
Automatic intensity windowing of mammographic images based on a perceptual metric.
Med Phys. 2017 Apr;44(4):1369-1378. doi: 10.1002/mp.12144. Epub 2017 Mar 22.
7
Microcalcification Segmentation from Mammograms: A Morphological Approach.
J Digit Imaging. 2017 Apr;30(2):172-184. doi: 10.1007/s10278-016-9923-8.
8
Microcalcification on mammography: approaches to interpretation and biopsy.
Br J Radiol. 2017 Jan;90(1069):20160594. doi: 10.1259/bjr.20160594. Epub 2016 Oct 17.
10
A new method of detecting micro-calcification clusters in mammograms using contourlet transform and non-linking simplified PCNN.
Comput Methods Programs Biomed. 2016 Jul;130:31-45. doi: 10.1016/j.cmpb.2016.02.019. Epub 2016 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验