Yetik Imam Samil, Nehorai Arye, Muravchik Carlos H, Haueisen Jens, Eiselt Michael
Department of Biomedical Engineering, University of California at Davis, 451 East Health Sciences Drive, Davis, CA 95616, USA.
IEEE Trans Biomed Eng. 2006 Oct;53(10):1872-82. doi: 10.1109/TBME.2006.881799.
We propose a number of electric source models that are spatially distributed on an unknown surface for biomagnetism. These can be useful to model, e.g., patches of electrical activity on the cortex. We use a realistic head (or another organ) model and discuss the special case of a spherical head model with radial sensors resulting in more efficient computations of the estimates for magnetoencephalography. We derive forward solutions, maximum likelihood (ML) estimates, and Cramér-Rao bound (CRB) expressions for the unknown source parameters. A model selection method is applied to decide on the most appropriate model. We also present numerical examples to compare the performances and computational costs of the different models and illustrate when it is possible to distinguish between surface and focal sources or line sources. Finally, we apply our methods to real biomagnetic data of phantom human torso and demonstrate the applicability of them.
我们提出了一些用于生物磁学的电源模型,这些模型在未知表面上进行空间分布。例如,这些模型可用于对皮质上的电活动斑块进行建模。我们使用逼真的头部(或其他器官)模型,并讨论具有径向传感器的球形头部模型的特殊情况,这会使脑磁图估计的计算更加高效。我们推导了未知源参数的正向解、最大似然(ML)估计和克拉美罗界(CRB)表达式。应用模型选择方法来确定最合适的模型。我们还给出了数值示例,以比较不同模型的性能和计算成本,并说明何时能够区分表面源和焦点源或线源。最后,我们将我们的方法应用于虚拟人体躯干的真实生物磁数据,并证明了它们的适用性。