Ajit Seena K, Young Kathleen H
Wyeth Research, Neuroscience Discovery Research, CN 8000, Princeton NJ 08543, USA.
Cell Signal. 2005 Jul;17(7):817-25. doi: 10.1016/j.cellsig.2004.11.003. Epub 2004 Dec 10.
For the identification of regulators of G-protein signaling (RGS) modulators, previously, we developed a luciferase based yeast pheromone response (YPhR) assay to functionally investigate RGS4 (K.H. Young, Y. Wang, C. Bender, S. Ajit, F. Ramirez, A. Gilbert, B.W. Nieuwenhuijsen, in: D.P. Siderovski (Ed.), Meth. Enzymol. 389 Regulators of G_protein Signaling, Part A, 2004.). To extend the diversity of this assay, additional RGS proteins were evaluated for functional complementation in a RGS (sst2Delta) knockout yeast strain. For RGS proteins that did not function in their native form, a series of chimeric constructs were generated with the N terminus of RGS4 fused in frame with the partial or full-length RGS cDNA of interest. RGS4 N terminus fused to either full-length or the C terminus of RGS7 successfully complemented sst2Delta. On the contrary, the RGS7N/RGS4C chimera (N terminus of RGS7 in frame with RGS domain of RGS4) was not effective, showing that N terminus of RGS4 helps in targeting. RGS10 exists as two splice variants, differing only by 8 amino acids (aa) in the N terminus, being either 168 aa (RGS10S), or 174 aa (RGS10). While RGS10 was functional in yeast, RGS10S required the presence of the N terminus of RGS4 for its activity. Although the same RGS4 N terminus domain was present in chimeras generated, the GTPase accelerating protein (GAP) function observed was not similar, suggesting differences in the RGS domain function. In conclusion, the use of RGS4 N terminus chimeric constructs enabled us to develop a selectivity assay for different RGS proteins.
为了鉴定G蛋白信号调节因子(RGS)调节剂,之前我们开发了一种基于荧光素酶的酵母信息素反应(YPhR)检测方法,用于对RGS4进行功能研究(K.H. Young、Y. Wang、C. Bender、S. Ajit、F. Ramirez、A. Gilbert、B.W. Nieuwenhuijsen,载于:D.P. Siderovski(编),《酶学方法》第389卷《G蛋白信号调节因子,A部分》,2004年)。为了扩大该检测方法的多样性,我们在RGS(sst2Delta)基因敲除酵母菌株中评估了其他RGS蛋白的功能互补情况。对于那些天然形式无功能的RGS蛋白,构建了一系列嵌合构建体,将RGS4的N端与感兴趣的部分或全长RGS cDNA进行框内融合。RGS4的N端与RGS7的全长或C端融合成功地互补了sst2Delta。相反,RGS7N/RGS4C嵌合体(RGS7的N端与RGS4的RGS结构域框内融合)无效,这表明RGS4的N端有助于靶向定位。RGS10以两种剪接变体形式存在,仅在N端相差8个氨基酸(aa),分别为168个aa(RGS10S)或174个aa(RGS10)。虽然RGS10在酵母中具有功能,但RGS10S需要RGS4的N端才能发挥活性。尽管所产生的嵌合体中存在相同的RGS4 N端结构域,但观察到的GTP酶加速蛋白(GAP)功能并不相似,这表明RGS结构域功能存在差异。总之,使用RGS4 N端嵌合构建体使我们能够开发针对不同RGS蛋白的选择性检测方法。