Speirs Christina, van Nimwegen Erik, Bolton Diane, Zavolan Mihaela, Duvall Melody, Angleman Sara, Siegel Richard, Perelson Alan S, Lenardo Michael J
Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
J Virol. 2005 Apr;79(7):4025-32. doi: 10.1128/JVI.79.7.4025-4032.2005.
Human immunodeficiency virus (HIV) causes complex metabolic changes in infected CD4(+) T cells that lead to cell cycle arrest and cell death by necrosis. To study the viral functions responsible for deleterious effects on the host cell, we quantitated the course of HIV type 1 infection in tissue cultures by using flow cytometry for a virally encoded marker protein, heat-stable antigen (HSA). We found that HSA appeared on the surface of the target cells in two phases: passive acquisition due to association and fusion of virions with target cells, followed by active protein expression from transcription of the integrated provirus. The latter event was necessary for decreased target cell viability. We developed a general mathematical model of viral dynamics in vitro in terms of three effective time-dependent rates: those of cell proliferation, infection, and death. Using this model we show that the predominant contribution to the depletion of viable target cells results from direct cell death rather than cell cycle blockade. This allows us to derive accurate bounds on the time-dependent death rates of infected cells. We infer that the death rate of HIV-infected cells is 80 times greater than that of uninfected cells and that the elimination of the vpr protein reduces the death rate by half. Our approach provides a general method for estimating time-dependent death rates that can be applied to study the dynamics of other viruses.
人类免疫缺陷病毒(HIV)在受感染的CD4(+) T细胞中引发复杂的代谢变化,导致细胞周期停滞并通过坏死引起细胞死亡。为了研究对宿主细胞产生有害影响的病毒功能,我们通过使用流式细胞术检测病毒编码的标记蛋白热稳定抗原(HSA),对组织培养中的1型HIV感染过程进行了定量分析。我们发现HSA以两个阶段出现在靶细胞表面:由于病毒粒子与靶细胞的结合和融合而被动获取,随后是整合前病毒转录后的活性蛋白表达。后一事件对于降低靶细胞活力是必要的。我们根据细胞增殖、感染和死亡这三个有效的时间依赖性速率,建立了体外病毒动力学的通用数学模型。使用该模型,我们表明对存活靶细胞耗竭的主要贡献来自直接细胞死亡而非细胞周期阻滞。这使我们能够得出受感染细胞时间依赖性死亡率的准确界限。我们推断,HIV感染细胞的死亡率比未感染细胞高80倍,并且vpr蛋白的消除可使死亡率降低一半。我们的方法提供了一种估计时间依赖性死亡率的通用方法,可用于研究其他病毒的动力学。