Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.
PLoS Comput Biol. 2012 Feb;8(2):e1002371. doi: 10.1371/journal.pcbi.1002371. Epub 2012 Feb 9.
The human APOBEC3G is an innate restriction factor that, in the absence of Vif, restricts HIV-1 replication by inducing excessive deamination of cytidine residues in nascent reverse transcripts and inhibiting reverse transcription and integration. To shed light on impact of A3G-Vif interactions on HIV replication, we developed a multi-scale computational system consisting of intracellular (single-cell), cellular and extracellular (multicellular) events by using ordinary differential equations. The single-cell model describes molecular-level events within individual cells (such as production and degradation of host and viral proteins, and assembly and release of new virions), whereas the multicellular model describes the viral dynamics and multiple cycles of infection within a population of cells. We estimated the model parameters either directly from previously published experimental data or by running simulations to find the optimum values. We validated our integrated model by reproducing the results of in vitro T cell culture experiments. Crucially, both downstream effects of A3G (hypermutation and reduction of viral burst size) were necessary to replicate the experimental results in silico. We also used the model to study anti-HIV capability of several possible therapeutic strategies including: an antibody to Vif; upregulation of A3G; and mutated forms of A3G. According to our simulations, A3G with a mutated Vif binding site is predicted to be significantly more effective than other molecules at the same dose. Ultimately, we performed sensitivity analysis to identify important model parameters. The results showed that the timing of particle formation and virus release had the highest impacts on HIV replication. The model also predicted that the degradation of A3G by Vif is not a crucial step in HIV pathogenesis.
人类 APOBEC3G 是一种先天限制因子,在没有 Vif 的情况下,通过诱导新生逆转录物中胞嘧啶残基的过度脱氨作用,并抑制逆转录和整合,限制 HIV-1 的复制。为了阐明 A3G-Vif 相互作用对 HIV 复制的影响,我们使用常微分方程开发了一个由细胞内(单细胞)、细胞和细胞外(多细胞)事件组成的多尺度计算系统。单细胞模型描述了单个细胞内的分子水平事件(如宿主和病毒蛋白的产生和降解,以及新病毒粒子的组装和释放),而多细胞模型描述了病毒动力学和细胞群体内的多个感染周期。我们直接根据先前发表的实验数据或通过运行模拟来估计模型参数,以找到最佳值。我们通过复制体外 T 细胞培养实验的结果来验证我们的综合模型。至关重要的是,A3G 的下游效应(超突变和病毒爆发大小的减少)都需要在体内复制实验结果。我们还使用该模型研究了几种可能的治疗策略的抗 HIV 能力,包括:针对 Vif 的抗体;A3G 的上调;以及 A3G 的突变形式。根据我们的模拟结果,与其他分子相比,具有突变 Vif 结合位点的 A3G 在相同剂量下预计更有效。最终,我们进行了敏感性分析以确定重要的模型参数。结果表明,颗粒形成和病毒释放的时间对 HIV 复制的影响最大。该模型还预测,Vif 对 A3G 的降解不是 HIV 发病机制中的关键步骤。