Morgan Thomas J
Adult Intensive Care, Mater Misericordiae Hospitals, Brisbane, Australia.
Crit Care. 2005 Apr;9(2):204-11. doi: 10.1186/cc2946. Epub 2004 Sep 3.
Stewart's quantitative physical chemical approach enables us to understand the acid-base properties of intravenous fluids. In Stewart's analysis, the three independent acid-base variables are partial CO2 tension, the total concentration of nonvolatile weak acid (ATOT), and the strong ion difference (SID). Raising and lowering ATOT while holding SID constant cause metabolic acidosis and alkalosis, respectively. Lowering and raising plasma SID while clamping ATOT cause metabolic acidosis and alkalosis, respectively. Fluid infusion causes acid-base effects by forcing extracellular SID and ATOT toward the SID and ATOT of the administered fluid. Thus, fluids with vastly differing pH can have the same acid-base effects. The stimulus is strongest when large volumes are administered, as in correction of hypovolaemia, acute normovolaemic haemodilution, and cardiopulmonary bypass. Zero SID crystalloids such as saline cause a 'dilutional' acidosis by lowering extracellular SID enough to overwhelm the metabolic alkalosis of ATOT dilution. A balanced crystalloid must reduce extracellular SID at a rate that precisely counteracts the ATOT dilutional alkalosis. Experimentally, the crystalloid SID required is 24 mEq/l. When organic anions such as L-lactate are added to fluids they can be regarded as weak ions that do not contribute to fluid SID, provided they are metabolized on infusion. With colloids the presence of ATOT is an additional consideration. Albumin and gelatin preparations contain ATOT, whereas starch preparations do not. Hextend is a hetastarch preparation balanced with L-lactate. It reduces or eliminates infusion related metabolic acidosis, may improve gastric mucosal blood flow, and increases survival in experimental endotoxaemia. Stored whole blood has a very high effective SID because of the added preservative. Large volume transfusion thus causes metabolic alkalosis after metabolism of contained citrate, a tendency that is reduced but not eliminated with packed red cells. Thus, Stewart's approach not only explains fluid induced acid-base phenomena but also provides a framework for the design of fluids for specific acid-base effects.
斯图尔特的定量物理化学方法使我们能够理解静脉输液的酸碱特性。在斯图尔特的分析中,三个独立的酸碱变量是二氧化碳分压、非挥发性弱酸的总浓度(ATOT)和强离子差(SID)。在保持SID不变的情况下升高和降低ATOT分别会导致代谢性酸中毒和碱中毒。在钳制ATOT的同时降低和升高血浆SID分别会导致代谢性酸中毒和碱中毒。输液通过迫使细胞外SID和ATOT趋向于所输注液体的SID和ATOT而产生酸碱效应。因此,pH值差异很大的液体可能具有相同的酸碱效应。当大量输注液体时,如在纠正低血容量、急性等容性血液稀释和体外循环时,这种刺激最强。零SID晶体液,如生理盐水,通过充分降低细胞外SID,使其超过ATOT稀释导致的代谢性碱中毒,从而引起“稀释性”酸中毒。平衡晶体液必须以精确抵消ATOT稀释性碱中毒的速率降低细胞外SID。实验表明,所需的晶体液SID为24 mEq/l。当诸如L-乳酸等有机阴离子添加到液体中时,只要它们在输注时被代谢,就可以被视为对液体SID无贡献的弱离子。对于胶体,ATOT的存在是另一个需要考虑的因素。白蛋白和明胶制剂含有ATOT,而淀粉制剂则不含。贺斯是一种与L-乳酸平衡的羟乙基淀粉制剂。它可减少或消除与输注相关的代谢性酸中毒,可能改善胃黏膜血流,并提高实验性内毒素血症的存活率。由于添加了防腐剂,库存全血具有非常高的有效SID。因此,大量输血在所含柠檬酸盐代谢后会导致代谢性碱中毒,这种趋势在输注浓缩红细胞时会减弱但不会消除。因此,斯图尔特的方法不仅解释了液体诱导的酸碱现象,还为设计具有特定酸碱效应的液体提供了一个框架。