Augustinack Jean C, van der Kouwe Andre J W, Blackwell Megan L, Salat David H, Wiggins Christopher J, Frosch Matthew P, Wiggins Graham C, Potthast Andreas, Wald Lawrence L, Fischl Bruce R
Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
Ann Neurol. 2005 Apr;57(4):489-94. doi: 10.1002/ana.20426.
The entorhinal cortex lies in the mediotemporal lobe and has major functional, structural, and clinical significance. The entorhinal cortex has a unique cytoarchitecture with large stellate neurons in layer II that form clusters. The entorhinal cortex receives vast sensory association input, and its major output arises from the layer II and III neurons that form the perforant pathway. Clinically, the neurons in layer II are affected with neurofibrillary tangles, one of the two pathological hallmarks of Alzheimer's disease. We describe detection of the entorhinal layer II islands using magnetic resonance imaging. We scanned human autopsied temporal lobe blocks in a 7T human scanner using a solenoid coil. In 70 and 100 microm isotropic data, the entorhinal islands were clearly visible throughout the anterior-posterior extent of entorhinal cortex. Layer II islands were prominent in both the magnetic resonance imaging and corresponding histological sections, showing similar size and shape in two types of data. Area borders and island location based on cytoarchitectural features in the mediotemporal lobe were robustly detected using the magnetic resonance images. Our ex vivo results could break ground for high-resolution in vivo scanning that could ultimately benefit early diagnosis and treatment of neurodegenerative disease.
内嗅皮质位于颞叶中部,具有重要的功能、结构和临床意义。内嗅皮质具有独特的细胞结构,其第二层有大型星状神经元,形成簇状。内嗅皮质接收大量感觉联合输入,其主要输出源自形成穿通通路的第二层和第三层神经元。临床上,第二层的神经元会受到神经原纤维缠结的影响,这是阿尔茨海默病的两个病理特征之一。我们描述了使用磁共振成像检测内嗅皮质第二层岛的方法。我们使用螺线管线圈在7T人体扫描仪中扫描人类尸检颞叶块。在70和100微米各向同性数据中,内嗅岛在整个内嗅皮质的前后范围内清晰可见。第二层岛在磁共振成像和相应的组织学切片中都很突出,在两种类型的数据中显示出相似的大小和形状。利用磁共振图像能可靠地检测基于颞叶中部细胞结构特征的区域边界和岛的位置。我们的离体结果可能为高分辨率活体扫描开辟道路,最终有益于神经退行性疾病的早期诊断和治疗。