Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA.
Harvard Medical School, Boston, MA, USA.
Sci Rep. 2023 Apr 11;13(1):5884. doi: 10.1038/s41598-023-32903-y.
Hippocampal subregions differ in specialization and vulnerability to cell death. Neuron death and hippocampal atrophy have been a marker for the progression of Alzheimer's disease. Relatively few studies have examined neuronal loss in the human brain using stereology. We characterize an automated high-throughput deep learning pipeline to segment hippocampal pyramidal neurons, generate pyramidal neuron estimates within the human hippocampal subfields, and relate our results to stereology neuron counts. Based on seven cases and 168 partitions, we vet deep learning parameters to segment hippocampal pyramidal neurons from the background using the open-source CellPose algorithm, and show the automated removal of false-positive segmentations. There was no difference in Dice scores between neurons segmented by the deep learning pipeline and manual segmentations (Independent Samples t-Test: t(28) = 0.33, p = 0.742). Deep-learning neuron estimates strongly correlate with manual stereological counts per subregion (Spearman's correlation (n = 9): r(7) = 0.97, p < 0.001), and for each partition individually (Spearman's correlation (n = 168): r(166) = 0.90, p <0 .001). The high-throughput deep-learning pipeline provides validation to existing standards. This deep learning approach may benefit future studies in tracking baseline and resilient healthy aging to the earliest disease progression.
海马亚区在专业化和对细胞死亡的易感性方面存在差异。神经元死亡和海马萎缩一直是阿尔茨海默病进展的标志。相对较少的研究使用立体学检查来研究人类大脑中的神经元丢失。我们描述了一种自动化的高通量深度学习管道,用于分割海马锥体神经元,在人类海马亚区生成锥体神经元估计,并将我们的结果与立体学神经元计数相关联。基于 7 个案例和 168 个分区,我们使用开源的 CellPose 算法检查了深度学习参数,以从背景中分割出海马锥体神经元,并展示了自动去除假阳性分割的效果。深度学习管道分割的神经元与手动分割的神经元的 Dice 评分没有差异(独立样本 t 检验:t(28) = 0.33,p = 0.742)。深度学习神经元估计与每个亚区的手动立体学计数强烈相关(Spearman 相关系数(n = 9):r(7) = 0.97,p < 0.001),并且对于每个分区都是如此(Spearman 相关系数(n = 168):r(166) = 0.90,p < 0.001)。高通量深度学习管道为现有标准提供了验证。这种深度学习方法可能有益于未来研究,以跟踪基线和有弹性的健康衰老,以及最早的疾病进展。