Suppr超能文献

固态下蛋白质的 GFT 投影 NMR 光谱学。

GFT projection NMR spectroscopy for proteins in the solid state.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

J Biomol NMR. 2010 Dec;48(4):213-23. doi: 10.1007/s10858-010-9451-7. Epub 2010 Oct 30.

Abstract

Recording of four-dimensional (4D) spectra for proteins in the solid state has opened new avenues to obtain virtually complete resonance assignments and three-dimensional (3D) structures of proteins. As in solution state NMR, the sampling of three indirect dimensions leads per se to long minimal measurement time. Furthermore, artifact suppression in solid state NMR relies primarily on radio-frequency pulse phase cycling. For an n-step phase cycle, the minimal measurement times of both 3D and 4D spectra are increased n times. To tackle the associated 'sampling problem' and to avoid sampling limited data acquisition, solid state G-Matrix Fourier Transform (SS GFT) projection NMR is introduced to rapidly acquire 3D and 4D spectral information. Specifically, (4,3)D (HA)CANCOCX and (3,2)D (HACA)NCOCX were implemented and recorded for the 6 kDa protein GB1 within about 10% of the time required for acquiring the conventional congeners with the same maximal evolution times and spectral widths in the indirect dimensions. Spectral analysis was complemented by comparative analysis of expected spectral congestion in conventional and GFT NMR experiments, demonstrating that high spectral resolution of the GFT NMR experiments enables one to efficiently obtain nearly complete resonance assignments even for large proteins.

摘要

在固态中对蛋白质的四维(4D)光谱进行记录为获得蛋白质的几乎完整的共振分配和三维(3D)结构开辟了新途径。与溶液状态 NMR 一样,三个间接维度的采样本身就会导致最小测量时间延长。此外,固态 NMR 中的伪影抑制主要依赖于射频脉冲相位循环。对于 n 步相位循环,3D 和 4D 光谱的最小测量时间都会增加 n 倍。为了解决相关的“采样问题”并避免采样受限的数据采集,引入了固态 G 矩阵傅里叶变换(SS GFT)投影 NMR 以快速获取 3D 和 4D 谱信息。具体来说,在间接维度中,使用相同的最大演化时间和谱宽,对于 6 kDa 蛋白质 GB1,实施并记录了(4,3)D(HA)CANCOCX 和(3,2)D(HACA)NCOCX,其所需的时间约为获取传统同系物所需时间的 10%。通过对常规 NMR 实验和 GFT NMR 实验中预期谱拥挤的比较分析补充了光谱分析,表明 GFT NMR 实验的高光谱分辨率使人们能够有效地获得几乎完整的共振分配,即使对于大型蛋白质也是如此。

相似文献

1
GFT projection NMR spectroscopy for proteins in the solid state.
J Biomol NMR. 2010 Dec;48(4):213-23. doi: 10.1007/s10858-010-9451-7. Epub 2010 Oct 30.
2
GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information.
J Am Chem Soc. 2003 Feb 5;125(5):1385-93. doi: 10.1021/ja028197d.
3
Fast (4,3)D GFT-TS NMR for NOESY of small to medium-sized proteins.
J Magn Reson. 2008 Jan;190(1):142-8. doi: 10.1016/j.jmr.2007.09.015. Epub 2007 Sep 22.
5
G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9642-7. doi: 10.1073/pnas.0403529101. Epub 2004 Jun 21.
6
Covariance NMR in higher dimensions: application to 4D NOESY spectroscopy of proteins.
J Biomol NMR. 2007 Nov;39(3):165-75. doi: 10.1007/s10858-007-9187-1. Epub 2007 Sep 18.
7
Principles and applications of GFT projection NMR spectroscopy.
Magn Reson Chem. 2006 Jul;44 Spec No:S51-60. doi: 10.1002/mrc.1817.
8
G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination.
J Am Chem Soc. 2005 Jun 29;127(25):9085-99. doi: 10.1021/ja0501870.
9
J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.
J Am Chem Soc. 2007 Jan 24;129(3):680-92. doi: 10.1021/ja066586s.
10
High-resolution methyl edited GFT NMR experiments for protein resonance assignments and structure determination.
J Biomol NMR. 2010 Nov;48(3):137-45. doi: 10.1007/s10858-010-9444-6. Epub 2010 Sep 14.

引用本文的文献

1
Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy.
Angew Chem Int Ed Engl. 2015 Aug 3;54(32):9162-85. doi: 10.1002/anie.201410653. Epub 2015 Jul 1.
2
Magic angle spinning NMR of viruses.
Prog Nucl Magn Reson Spectrosc. 2015 Apr;86-87:21-40. doi: 10.1016/j.pnmrs.2015.02.003. Epub 2015 Feb 16.
3
MAS NMR of HIV-1 protein assemblies.
J Magn Reson. 2015 Apr;253:10-22. doi: 10.1016/j.jmr.2014.12.009.
4
Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data.
J Biomol NMR. 2014 Nov;60(2-3):85-90. doi: 10.1007/s10858-014-9859-6. Epub 2014 Sep 6.
7
Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies.
J Phys Chem B. 2012 Jun 28;116(25):7416-27. doi: 10.1021/jp3032786. Epub 2012 Jun 18.
8
Simultaneous acquisition of PAR and PAIN spectra.
J Biomol NMR. 2012 Apr;52(4):283-8. doi: 10.1007/s10858-012-9616-7. Epub 2012 Feb 28.

本文引用的文献

1
Dynamic nuclear polarization at 9T using a novel 250 GHz gyrotron microwave source. 2003.
J Magn Reson. 2011 Dec;213(2):404-9. doi: 10.1016/j.jmr.2011.09.010.
2
Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA.
J Mol Biol. 2010 Jun 4;399(2):268-82. doi: 10.1016/j.jmb.2010.04.012. Epub 2010 Apr 13.
3
Clean absorption-mode NMR data acquisition.
Angew Chem Int Ed Engl. 2009;48(8):1479-83. doi: 10.1002/anie.200804927.
4
Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4621-6. doi: 10.1073/pnas.0712393105. Epub 2008 Mar 14.
5
Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core.
Science. 2008 Mar 14;319(5869):1523-6. doi: 10.1126/science.1151839.
8
Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning.
J Am Chem Soc. 2007 Sep 26;129(38):11791-801. doi: 10.1021/ja073462m. Epub 2007 Aug 29.
9
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins.
J Biomol NMR. 2007 Oct;39(2):107-31. doi: 10.1007/s10858-007-9179-1. Epub 2007 Aug 9.
10
J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.
J Am Chem Soc. 2007 Jan 24;129(3):680-92. doi: 10.1021/ja066586s.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验