Suppr超能文献

用于对观察到的家庭互动序列进行建模的多级方法。

Multilevel methods for modeling observed sequences of family interaction.

作者信息

Howe George W, Dagne Getachew, Brown C Hendricks

机构信息

Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC 20037, USA.

出版信息

J Fam Psychol. 2005 Mar;19(1):72-85. doi: 10.1037/0893-3200.19.1.72.

Abstract

Observation of interaction plays a central role in family research. This article discusses how to analyze sequential data generated by discrete microcoding methods to test hypotheses about family interaction. Current methods for studying sequential data are presented, and their limits are discussed. Building on recent applications of contingency table analysis to such data, a multilevel log-linear model is presented that can specify and estimate indicators of individual behavioral tendencies and antecedent-consequent relationships among behaviors, both within and across samples of families. An example of this method is presented using data from a study of couples facing job loss. Potential extensions of this framework for future research are discussed.

摘要

互动观察在家庭研究中起着核心作用。本文讨论了如何分析由离散微编码方法生成的序列数据,以检验关于家庭互动的假设。介绍了当前研究序列数据的方法,并讨论了它们的局限性。基于列联表分析在此类数据上的最新应用,提出了一种多级对数线性模型,该模型可以指定和估计个体行为倾向指标以及家庭样本内部和之间行为的前后关系。使用来自一项针对面临失业的夫妇的研究数据给出了该方法的一个示例。讨论了该框架未来研究的潜在扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验